Direct laser writing (DLW) enables the manufacturing of functional quantum dot (QD)-polymer nanostructures with the special performance desired for technological applications. However, most papers fabricate the QD-polymer photoresist based on the principle of two-photon polymerization using laser wavelengths of 750-800 nm, which cannot effectively fabricate the near-infrared QD-polymer photoresist with absorption wavelengths above 800 nm due to linear absorption. Moreover, most papers report a relatively low doping concentration of QDs. To address these issues, this study introduces three-photon DLW technology using a near-infrared 1035 nm laser to effectively avoid the linear absorption of the near-infrared PbS/CdS QD-polymer photoresist. Three kinds of QD-polymer photoresists with concentrations up to 150 mg mL are prepared through surface modification of QDs. We demonstrate that three-photon DLW is feasible to fabricate high-concentration QD-polymer photoresist to produce micro/nano high-performance QD-polymer filters of visible and near-infrared light absorption. This study provides materials and process guidance for the fabrication and application of visible and near-infrared optical filters through three-photon DLW processing of various kinds of functional nanoparticles-polymer photoresist.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c13129 | DOI Listing |
ACS Appl Mater Interfaces
September 2024
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.
Direct laser writing (DLW) enables the manufacturing of functional quantum dot (QD)-polymer nanostructures with the special performance desired for technological applications. However, most papers fabricate the QD-polymer photoresist based on the principle of two-photon polymerization using laser wavelengths of 750-800 nm, which cannot effectively fabricate the near-infrared QD-polymer photoresist with absorption wavelengths above 800 nm due to linear absorption. Moreover, most papers report a relatively low doping concentration of QDs.
View Article and Find Full Text PDFNanoscale Adv
August 2019
Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, École Normale Supérieure de Cachan, Centrale Supélec, CNRS, Université Paris-Saclay 61 Avenue du Président Wilson 94235 Cachan Cedex France
Colloidal semiconductor quantum dots (QDs) are promising candidates for various applications in electronics and quantum optics. However, they are sensitive and vulnerable to the chemical environment due to their highly dynamic surface with a large portion of exposed atoms. Hence, oxidation and detrimental defects on the nanocrystal (NC) interface dramatically deteriorate their optical as well as electrical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!