The long-term operation feature of enzymatic biofuel cell-based self-powered biosensor (EBFC-SPB) endows them with the potential to execute dual-signal biosensing without having to integrate an extra signal acquisition device. Herein, cobalt and manganese codoped CeO nanospheres (CoMn-CeO NSs) with glucose-oxidase-like and peroxidase-like activities have been developed as substrate-switched dual-channel signal transduction components in EBFC-SPB for a dual-signal assay of aflatoxin B1 (AFB1). The CoMn-CeO NSs modified with aptamer are anchored to a complementary DNA-attached bioanode of EBFC-SPB by base complementary pairing, which catalyze the glucose oxidation together with the glucose oxidase (GOx) on the bioanode. Once the AFB1 appears, CoMn-CeO NSs will be released from the bioanode due to the binding specificity of the aptamer, resulting in a decreased catalytic efficiency and the first declining stage of EBFC-SPB. Accompanied by the introduction of HO, the residual CoMn-CeO NSs on the bioanode switch to peroxidase-like activity and mediate the production of benzo-4-chlorohexadienone (4-CD) precipitate, which increases the steric hindrance and yields another declining stage of EBFC-SPB. By assessing the variation amplitudes during these two declining stages, the dual-signal assay of AFB1 has been realized with satisfying results. This work not only breaks ground in dual-signal bioassays but also deepens the application of nanozymes in EBFC-SPB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c03014 | DOI Listing |
ACS Nano
January 2025
Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
UV-vis spectroscopy is a workhorse in analytical chemistry that finds application in life science, organic synthesis, and energy technologies like photocatalysis. In its traditional implementation with cuvettes, it requires sample volumes in the milliliter range. Here, we show how nanofluidic scattering spectroscopy (NSS), which measures visible light scattered from a single nanochannel in a spectrally resolved way, can reduce this sample volume to the attoliter range for solute concentrations in the mM regime, which corresponds to as few as 10 probed molecules.
View Article and Find Full Text PDFSchizophr Bull
January 2025
Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", Institut de psychiatrie, CNRS GDR 3557, 75014 Paris, France.
Chin Med
January 2025
Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.
Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:
This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Huazhong University of Science and Technology, School of Chemistry and Chemical Engineering, CHINA.
Porous organic polymers have shown great potential in photocatalytic CO2 reduction due to their unique tunable structure favoring gas adsorption and metal sites integration. However, efficient photocatalysis in porous polymers is greatly limited by the low surface reactivity and electron mobility of bulk structure. Herein, we incorporate TiO2 nanoparticles and Ni(II) sites into a layered cationic imidazolium polymer (IP), in which the imidazolium moieties and free anions can stabilize the key intermediates and enhance the reaction kinetics of CO2 reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!