Lactate analysis plays an important role in sports science and training decisions for optimising performance, endurance, and overall success in sports. Two parameters are widely used for these goals: aerobic (AeT) and anaerobic (AnT) thresholds. However, determining AeT proves more challenging than AnT threshold due to both physiological intricacies and practical considerations. Thus, the aim of this study was to determine AeT and AnT thresholds using machine learning modelling (ML) and to compare ML-obtained results with the parameters' values determined using conventional methods. ML seems to be highly useful due to its ability to handle complex, personalised data, identify nonlinear relationships, and provide accurate predictions. The 183 results of CardioPulmonary Exercise Test (CPET) accompanied by lactate and heart ratio analyses from amateur athletes were enrolled to the study and ML models using the following algorithms: Random Forest, XGBoost (Extreme Gradient Boosting), and LightGBM (Light Gradient Boosting Machine) and metrics: R2, mean absolute error (MAE), mean squared error (MSE) and root mean square error (RMSE). The regressors used belong to the group of ensemble learning algorithms that combine the predictions of multiple base models to improve overall performance and counteract overfitting to training data. Based on evaluation metrics, the following models give the best predictions: for AeT: Random Forest has an R2 value of 0.645, MAE of 4.630, MSE of 44.450, RMSE of 6.667; and for AnT: LightGBM has an R2 of 0.803, the highest among the models, MAE of 3.439, the lowest among the models, MSE of 20.953, and RMSE of 4.577. Outlined research experiments, a comprehensive review of existing literature in the field, and obtained results suggest that ML models can be trained to make personalised predictions based on an individual athlete's unique physiological response to exercise. Athletes exhibit significant variation in their AeT and AT, and ML can capture these individual differences, allowing for tailored training recommendations and performance optimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361594 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309427 | PLOS |
Comput Methods Biomech Biomed Engin
January 2025
Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.
View Article and Find Full Text PDFArch Pathol Lab Med
January 2025
the Department of Pathology, The Ohio State University, Columbus (Parwani).
Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.
Objective.
Anal Sci
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, TRNC, Mersin 10, 99138, Nicosia, Turkey.
In this research, a green approach utilizing deep eutectic solvent liquid-liquid microextraction is combined with smartphone digital image colorimetry for the determination of boron in nut samples. A smartphone camera was used to capture the image of the analyte extract located in a custom-made colorimetric box. Using ImageJ software, the images were split into RGB channels, with the green channel identified as the optimum.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
LEESU, Ecole des Ponts Paris Tech, UPEC, AgroParisTech, F-77455 Marne-la-Vallée, Paris, France.
Urban reservoirs are frequently exposed to impacts from high population density, polluting activities, and the absence of environmental control measures and monitoring. In this study, we investigated the use of satellite imagery to assess restoration measures and support decision-making in a hypereutrophic urban reservoir. Since 2016, Lake Pampulha (Brazil) has undergone restoration measures, including the application of Phoslock®, to mitigate its poor water quality conditions.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Thyroid Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Objective: Despite the identification of various prognostic factors for anaplastic thyroid carcinoma (ATC) patients over the years, a precise prognostic tool for these patients is still lacking. This study aimed to develop and validate a prognostic model for predicting survival outcomes for ATC patients using random survival forests (RSF), a machine learning algorithm.
Methods: A total of 1222 ATC patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and randomly divided into a training set of 855 patients and a validation set of 367 patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!