AI Article Synopsis

  • - Structured illumination microscopy (SIM) is a powerful super-resolution imaging technique that allows for real-time imaging of live cells, but the traditional methods can struggle with low signal-to-noise ratios (SNR), leading to inaccuracies in image reconstruction.
  • - The study introduces a new method called physics-enhanced neural network-based parameter-free spatial domain reconstruction (PNNP-SDR), which can reconstruct images directly in the spatial domain without needing high-precision parameter estimation.
  • - PNNP-SDR shows significant improvements, with about a 4 dB increase in peak signal-to-noise ratio (PSNR) compared to traditional methods and is approximately five times faster than existing approaches, making it a promising tool for biomedical super-resolution imaging.

Article Abstract

With full-field imaging and high photon efficiency advantages, structured illumination microscopy (SIM) is one of the most potent super-resolution (SR) modalities in bioscience. Regarding SR reconstruction for SIM, spatial domain reconstruction (SDR) has been proven to be faster than traditional frequency domain reconstruction (FDR), facilitating real-time imaging of live cells. Nevertheless, SDR relies on high-precision parameter estimation for reconstruction, which tends to suffer from low signal-to-noise ratio (SNR) conditions and inevitably leads to artifacts that seriously affect the accuracy of SR reconstruction. In this Letter, a physics-enhanced neural network-based parameter-free SDR (PNNP-SDR) is proposed, which can achieve SR reconstruction directly in the spatial domain. As a result, the peak-SNR (PSNR) of PNNP-SDR is improved by about 4 dB compared to the cross-correlation (COR) SR reconstruction; meanwhile, the reconstruction speed of PNNP-SDR is even about five times faster than the fast approach based on principal component analysis (PCA). Given its capability of achieving parameter-free imaging, noise robustness, and high-fidelity and high-speed SR reconstruction over conventional SIM microscope hardware, the proposed PNNP-SDR is expected to be widely adopted in biomedical SR imaging scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.533164DOI Listing

Publication Analysis

Top Keywords

reconstruction
9
structured illumination
8
illumination microscopy
8
physics-enhanced neural
8
spatial domain
8
domain reconstruction
8
parameter-free super-resolution
4
super-resolution structured
4
microscopy physics-enhanced
4
neural network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!