The kidney plays a major role in maintenance of serum calcium concentration, which must be kept within a narrow range to avoid disruption of numerous physiologic processes that depend critically on the level of extracellular calcium, including cell signaling, bone structure, and muscle and nerve function. This defense of systemic calcium homeostasis comes, however, at the expense of the dumping of calcium into the kidney tissue and urine. Because of the large size and multivalency of the calcium ion, its salts are the least soluble among all the major cations in the body. The potential pathologic consequences of this are nephrocalcinosis and kidney stone disease. In this review, we discuss recent advances that have highlighted critical roles for the proximal tubule and thick ascending limb in renal calcium reabsorption, elucidated the molecular mechanisms for paracellular transport in these segments, and implicated disturbances in these processes in human disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617488 | PMC |
http://dx.doi.org/10.1681/ASN.0000000506 | DOI Listing |
Mol Med
January 2025
Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P. R. China.
Background: Obesity is a significant risk factor for severe acute pancreatitis (SAP) and is typically associated with increased intestinal permeability. Understanding the role of specific molecules can help reduce the risk of developing SAP. Claudin 11 (CLDN11), a member of the Claudin family, regulates the permeability of various internal barriers.
View Article and Find Full Text PDFInt J Pharm
January 2025
Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China. Electronic address:
Liposomes are widely recognized as effective drug delivery systems, characterized by biodegradability, biocompatibility, and ability to minimize toxicity. However, liposome-based nanotechnology has not demonstrated superior anti-tumor efficacy due to their limited intratumor penetration. Strategies to improve the tumor delivery efficiency of nanomedicine remain to be developed.
View Article and Find Full Text PDFJ Control Release
January 2025
Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Cardiovascular Sciences Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Neurosurgery Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Resnick Sustainability Center of Catalysis, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Bruce and Ruth Rappaport Cancer Research Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel. Electronic address:
The intricate interplay between human breast milk, nanoparticles, and macromolecules holds promise for innovative nutritional delivery strategies. Compared to bovine milk and infant formula, this study explores human breast milk's role in modulating intestinal permeability and its impact on nanoparticle and macromolecule transport. Comparative analysis with bovine milk and infant formula reveals significant elevations in permeability with human breast milk, accompanied by a decrease in transepithelial electrical resistance, suggesting enhanced paracellular transport.
View Article and Find Full Text PDFRev Neurosci
January 2025
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
Essentially, the blood-brain barrier (BBB) serves as a line of demarcation between neural tissues and the bloodstream. A unique and protective characteristic of the blood-brain barrier is its ability to maintain cerebral homeostasis by regulating the flux of molecules and ions. The inability to uphold proper functioning in any of these constituents leads to the disruption of this specialized multicellular arrangement, consequently fostering neuroinflammation and neurodegeneration.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Dipeptidyl peptidase IV (DPP-IV) is an important target enzyme for the treatment of type 2 diabetes mellitus (T2DM). Increasing researchers try to screen DPP-IV inhibitory peptides while the cost of DPP-IV is high. In this study, PkDPP-IV was efficiently purified by acid precipitation, ammonium sulfate salting out and gel filtration chromatography with a purification of 283.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!