A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning to predict risk of lateral skull base cerebrospinal fluid leak or encephalocele. | LitMetric

Deep learning to predict risk of lateral skull base cerebrospinal fluid leak or encephalocele.

Int J Comput Assist Radiol Surg

Department of Radiology, Mayo Clinic, 5777 E Mayo Boulevard, Phoenix, AZ, 85054, USA.

Published: December 2024

Purpose: Skull base features, including increased foramen ovale (FO) cross-sectional area, are associated with lateral skull base spontaneous cerebrospinal fluid (sCSF) leak and encephalocele. Manual measurement requires skill in interpreting imaging studies and is time consuming. The goal of this study was to develop a fully automated deep learning method for FO segmentation and to determine the predictive value in identifying patients with sCSF leak or encephalocele.

Methods: A retrospective cohort study at a tertiary care academic hospital of 34 adults with lateral skull base sCSF leak or encephalocele were compared with 815 control patients from 2013-2021. A convolutional neural network (CNN) was constructed for image segmentation of axial computed tomography (CT) studies. Predicted FO segmentations were compared to manual segmentations, and receiver operating characteristic (ROC) curves were constructed.

Results: 295 CTs were used for training and validation of the CNN. A separate dataset of 554 control CTs was matched 5:1 on age and sex with the sCSF leak/encephalocele group. The mean Dice score was 0.81. The sCSF leak/encephalocele group had greater mean (SD) FO cross-sectional area compared to the control group, 29.0 (7.7) mm versus 24.3 (7.6) mm (P = .002, 95% confidence interval 0.02-0.08). The area under the ROC curve was 0.69.

Conclusion: CNNs can be used to segment the cross-sectional area of the FO accurately and efficiently. Used together with other predictors, this method could be used as part of a clinical tool to predict the risk of sCSF leak or encephalocele.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-024-03259-zDOI Listing

Publication Analysis

Top Keywords

skull base
16
leak encephalocele
16
scsf leak
16
lateral skull
12
cross-sectional area
12
deep learning
8
predict risk
8
cerebrospinal fluid
8
scsf leak/encephalocele
8
leak/encephalocele group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!