Background: This study examines self-reported sleep alterations in treatment-resistant depression (TRD) inpatients following intravenous ketamine administration.

Methods: This is a post-hoc analysis of a naturalistic observational study, which enrolled 28 inpatients with treatment-resistant major depressive disorder and analyzed self-reported sleep changes (items 1-4; 'insomnia', 'nighttime restlessness', 'early morning waking', 'hypersomnia') in Inventory of Depressive Symptomatology 30-item (IDS SR-30) in responders and non-responders stratified per Montgomery-Åsberg Depression Rating Scale (MADRS) during short-term ketamine treatment.

Results: Responders, as well as non-responders, did not experience significant changes in IDS SR-30 sleep items ('insomnia', 'nighttime restlessness', 'early morning waking', 'hypersomnia') (p's > 0.05) at 7-day follow-up after eight intravenous ketamine infusions as compared to baseline.

Conclusion: Neither responders, nor non-responders reported any significant alterations in sleep patterns during ketamine infusions. These findings are not in line with current literature, as so far modest improvements in sleep during ketamine treatment have been reported. Results should be interpreted with caution, primarily due to the small sample size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582297PMC
http://dx.doi.org/10.1007/s43440-024-00641-1DOI Listing

Publication Analysis

Top Keywords

sleep alterations
8
alterations treatment-resistant
8
treatment-resistant depression
8
ketamine treatment
8
self-reported sleep
8
intravenous ketamine
8
'insomnia' 'nighttime
8
'nighttime restlessness'
8
restlessness' 'early
8
'early morning
8

Similar Publications

Background: While the effects of sleep deprivation on cognitive function are well-documented, its impact on high-intensity endurance performance and underlying neural mechanisms remains underexplored, especially in the context of search and rescue operations where both physical and mental performance are essential. This study examines the neurophysiological basis of sleep deprivation on high-intensity endurance using electroencephalography (EEG). In this crossover study, twenty firefighters were subjected to both sleep deprivation (SD) and normal sleep conditions, with each participant performing endurance treadmill exercise the following morning after each condition.

View Article and Find Full Text PDF

Background: Chronic rhinosinusitis (inclusive of subtypes with nasal polyps [CRSwNP], without nasal polyps [CRSsNP], and allergic fungal rhinosinusitis [AFRS]) causes inflammation of the nose mucosa and paranasal sinuses. Unfortunately, evidence supporting use of clinical outcome assessments (COAs) in regulated clinical trials to assess key measurement concepts of these conditions is limited.

Objective: To identify key disease-related symptoms and impacts, potential outcomes of interest for new treatments, and COAs available to measure those outcomes among adult and adolescent individuals living with CRSwNP, CRSsNP, and AFRS.

View Article and Find Full Text PDF

Dopaminergic modulation of propofol-induced activation in VLPO neurons: the role of D1 receptors in sleep-promoting neural circuits.

Front Neurosci

January 2025

The Key Laboratory of Anesthesia and Organ Protection, The Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.

Background: The ventrolateral preoptic nucleus (VLPO) is a crucial regulator of sleep, and its neurons are implicated in both sleep-wake regulation and anesthesia-induced loss of consciousness. Propofol (PRO), a widely used intravenous anesthetic, modulates the activity of VLPO neurons, but the underlying mechanisms, particularly the role of dopaminergic receptors, remain unclear.

Objective: This study aimed to investigate the effects of PRO on NA (-) neurons in the VLPO and to determine the involvement of D1 and D2 dopaminergic receptors in mediating these effects.

View Article and Find Full Text PDF

This study aimed to characterize the triple-hit schizophrenia-like model rats (Wisket) by the assessment of (1) behavioral parameters in different test conditions (reward-based Ambitus test and HomeManner system) for a prolonged period, (2) cerebral muscarinic M1 receptor (M1R) expression, and (3) the effects of olanzapine treatment on these parameters. Wistar (control) and Wisket rats were injected for three consecutive weeks with olanzapine depot (100 mg/kg) and spent 4 weeks in large cages with environmental enrichment (HomeManner). The vehicle-treated Wisket rats spent longer time awake with decreased grooming activity compared to controls, without changes in their active social behavior (sniffing, playing, fighting) obtained in HomeManner.

View Article and Find Full Text PDF

Mechanistic insights into chemotherapy-induced circadian disruption using rodent models.

Trends Neurosci

January 2025

Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA. Electronic address:

Chemotherapy treatment can significantly increase the survival of patients with cancer, but it also causes collateral damage in the body that can lead to treatment dose reductions and can reduce patient quality of life. One understudied side effect of chemotherapy is circadian disruption, which is associated with lasting biological and behavioral toxicities. Mechanisms of how chemotherapy alters circadian rhythms remain largely unknown, although leveraging rodent models may provide insights into causes and consequences of this disruption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!