Traditional risk assessment methodologies in toxicology have relied upon animal testing, despite concerns regarding interspecies consistency, reproducibility, costs, and ethics. New Approach Methodologies (NAMs), including cell culture and multi-level omics analyses, hold promise by providing mechanistic information rather than assessing organ pathology. However, NAMs face limitations, like lacking a whole organism and restricted toxicokinetic interactions. This is an inherent challenge when it comes to the use of omics data from in vitro studies for the prediction of organ toxicity in vivo. One solution in this context are comparative in vitro-in vivo studies as they allow for a more detailed assessment of the transferability of the respective NAM data. Hence, hepatotoxic and nephrotoxic pesticide active substances were tested in human cell lines and the results subsequently related to the biology underlying established effects in vivo. To this end, substances were tested in HepaRG and RPTEC/tERT1 cells at non-cytotoxic concentrations and analyzed for effects on the transcriptome and parts of the proteome using quantitative real-time PCR arrays and multiplexed microsphere-based sandwich immunoassays, respectively. Transcriptomics data were analyzed using three bioinformatics tools. Where possible, in vitro endpoints were connected to in vivo observations. Targeted protein analysis revealed various affected pathways, with generally fewer effects present in RPTEC/tERT1. The strongest transcriptional impact was observed for Chlorotoluron in HepaRG cells (increased CYP1A1 and CYP1A2 expression). A comprehensive comparison of early cellular responses with data from in vivo studies revealed that transcriptomics outperformed targeted protein analysis, correctly predicting up to 50% of in vivo effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489238 | PMC |
http://dx.doi.org/10.1007/s00204-024-03839-7 | DOI Listing |
J Membr Biol
January 2025
Departamento de Alimentos. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México.
The Cell-Free Protein Synthesis (CFPS) is an innovative technique used to produce various proteins. It has several advantages, including short expression times, no strain engineering is required, and toxic proteins such as membrane proteins can be produced. However, the most important advantage is that it eliminates the need for a living cell as a production system.
View Article and Find Full Text PDFRadiat Environ Biophys
January 2025
Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India.
Radiation therapy (RT) is fundamental to the fight against cancer because of its exceptional ability to target and destroy cancer cells. However, conventional radiation therapy can significantly affect the adjacent normal tissues, leading to fibrosis, inflammation, and decreased organ function. This tissue damage not only reduces the quality of life but also prevents the total elimination of cancer.
View Article and Find Full Text PDFNutr Neurosci
January 2025
Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.
Purpose: The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption.
View Article and Find Full Text PDFTech Innov Patient Support Radiat Oncol
March 2025
University of South-Eastern, Faculty of Health and Social Sciences, Norway.
Objective: Globally, in 2022, 30,871 children were diagnosed with CNS-tumors. Many have been treated with radiotherapy, and a significant number suffer from chronic late effects, including fatigue. This study aims to investigate previous research on the impact of cancer-related fatigue for neurocognitive function that can be related to radiotherapy in patients who have undergone primary brain radiotherapy before the age of 18.
View Article and Find Full Text PDFJ Immunol Res
December 2024
Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye.
Antimicrobial peptides (AMPs) are crucial components of the innate immune system in all living organisms, playing a vital role in the body's defense against diseases and infections. The immune system's primary functions include preventing disease-causing agents from entering the body and eliminating them without causing harm. These peptides exhibit broad-spectrum activity against bacteria, viruses, fungi, parasites, and cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!