Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Highly efficient anti-Stokes (AS) photoluminescence (PL) is observed from halide perovskite quantum dots (QDs) due to their strong electron-phonon interactions. The AS PL is particularly intriguing, as it suggests the potential for semiconductor optical cooling if the external quantum efficiency approaches 100%. However, the PL quantum efficiency in QDs is primarily dominated by multiparticle nonradiative Auger recombination processes under intense photoexcitation, which impose limits on the optical cooling gain. Here, we investigate the Auger recombination of dot-in-crystal perovskites. We quantitatively estimate the maximum optical cooling gain and the corresponding excitation intensity. We further conducted optical cooling experiments and demonstrate a maximum photocooling of approximately 9 K from room temperature. Additionally, we confirmed that increasing the excitation intensity leads to a transition from photocooling to photoheating. These observations are consistent with our time-resolved measurements, offering insights into the potential and limitations of optical cooling in semiconductor QDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c02885 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!