Purpose: Retinitis pigmentosa (RP), the most common inherited retinal disease, is characterized by progressive photoreceptor degeneration. It remains unknown to what extent surviving photoreceptors transduce light and support vision in RP. To address this, we correlated structure and functional measures using adaptive optics scanning laser ophthalmoscopy (AOSLO), adaptive optics microperimetry, and adaptive optics optical coherence tomography (AO-OCT)-based optoretinograms (ORGs).
Methods: Four patients with RP were imaged with AOSLO across the visual field covering the transition zone (TZ) of normal to diseased retina. Cone density was estimated in discrete regions spanning the TZ. Visual sensitivity was assessed by measuring increment thresholds for a 3-arcmin stimulus targeted via active eye tracking in AOSLO. ORGs were measured at the same locations using AO-OCT to assess the cones' functional response to a 528 ± 20-nm stimulus. Individual cone outer segment (COS) lengths were measured from AO-OCT in each subject.
Results: Cone density was significantly reduced in patients with RP. Density reduction correlated with TZ location in 3 patients with RP, while a fourth had patches of reduced density throughout the retina. ORG amplitude was reduced in regions of normal and reduced cone density in all patients with RP. ORG response and COS length were positively correlated in controls but not in patients with RP. Despite deficits in cone density and ORG, visual sensitivity remained comparable to controls in three of four patients with RP.
Conclusions: ORG-based measures of retinal dysfunction may precede deficits in cone structure and visual sensitivity. ORG is a sensitive measure of RP disease status and has significant potential to provide insight into disease progression and treatment efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364184 | PMC |
http://dx.doi.org/10.1167/iovs.65.10.45 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!