Paper used for packaging applications is often coated with thin polymer coatings to improve the properties, like printability and barrier properties, respectively. Today, these coatings are still often based on petroleum-based polymers. In this study, the fabrication of biobased thin film coatings is described. Poly(itaconic acid ester)s, which are prepared by emulsion polymerization, are used as water-based coatings for paper. The thermal properties of the polymers are tuned by the side chain of the monomers (diethyl itaconate vs. dibutyl itaconate). Different formulations based on the polymer emulsion and additives, like rheology modifiers, are prepared and their film formation is studied. The usage of a rheology modifier results in excellent film formation. These polymer coatings feature an additional function - they are capable of self-healing. The healing ability is studied in scratch healing tests, in which almost complete recovery can be observed after healing at 100 °C. Moreover, the restoration of optical properties/aesthetics is studied. In gloss measurements before and after damage as well as after a healing time the complete recovery of the gloss can be observed. Furthermore, the barrier properties against fat are studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202401499 | DOI Listing |
Adv Sci (Weinh)
January 2025
Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China.
Developing low-cost unipolar n-type organic thin-film transistors (OTFTs) is necessary for logic circuits. To achieve this objective, the usage of new electron-deficient building blocks with simple structure and easy synthetic route is desirable. Among all electron-deficient building units, N-oxide-functionalized bipyridines can be prepared through a simple oxidized transformation of bipyridines.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.
Polymorphism determines significant variations in materials' properties by lattice symmetry variation. If they are stacked together into multilayers, polymorphs may work as an alternative approach to the sequential deposition of layers with different chemical compositions. However, selective polymorph crystallization during conventional thin film synthesis is not trivial; changes of temperature or pressure when switching from one polymorph to another during synthesis may cause degradation of the structural quality.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States.
This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.
Controlling the Mott transition through strain engineering is crucial for advancing the development of memristive and neuromorphic computing devices. Yet, Mott insulators are heterogeneous due to intrinsic phase boundaries and extrinsic defects, posing significant challenges to fully understanding the impact of microscopic distortions on the local Mott transition. Here, using a synchrotron-based scanning X-ray nanoprobe, we studied the real-space structural heterogeneity during the structural phase transition in a VO thin film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!