The original idea of rejecting studies with low power and authorising them if their power is sufficiently high is reasonable and even an obligation, although in practice this reasoning is heavily constrained by the fact that the power of a study depends on several factors, rather than a single one. Furthermore, there is no threshold separating 'high' power values from 'low' power values'. However, if the result is very significant, considering how powerful it was it makes little sense after the study has been carried out. It is only possible to take advantage of the result. Situations in which this result is not statistically significant warrant further consideration. Consideration of the power may be useful in these circumstances. This article focuses on the position that should be adopted in these cases, and it shows that in order to draw reasonable conclusions about the effect size of the population, calculating the confidence interval is more useful than calculating the power, and its interpretation is more easily understood by physicians who lack training in statistical analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469103 | PMC |
http://dx.doi.org/10.33588/rn.7905.2024099 | DOI Listing |
Nanotechnology
January 2025
School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xianning West Road No.28 Xi'an Shannxi Province, Xi'an, Shaanxi, 710049, CHINA.
HfO-based ferroelectric (FE) thin films have gained considerable interest for memory applications due to their excellent properties. However, HfO₂-based FE films face significant reliability challenges, especially the wake-up and fatigue effects, which hinder their practical application. In this work, we fabricated 13.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom.
Background: The literature is equivocal as to whether the predicted negative mental health impact of the COVID-19 pandemic came to fruition. Some quantitative studies report increased emotional problems and depression; others report improved mental health and well-being. Qualitative explorations reveal heterogeneity, with themes ranging from feelings of loss to growth and development.
View Article and Find Full Text PDFACS Nano
January 2025
Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zn metal anodes in mildly acidic electrolytes usually suffer from a series of problems, including parasitic dendrite growth and severe side reactions, significantly limiting the Zn utilization efficiency and cycling life. A deep understanding of the Zn stripping/plating process is essential to obtain high-efficiency and long-life Zn metal anodes. Here, the factors affecting the Zn stripping/plating process are revealed, suggesting that thermodynamic uniformity in bulk structures promotes an orderly Zn stripping process, and a fast kinetic diffusion rate on the Zn surface facilitates uniform Zn deposition.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1Institute of Applied Sciences, Academy of Physical Education, Kraków, Poland.
: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China.
Sticker-type transparent antireflective film (STAF) is applied to perovskite solar cells (PSCs) to reduce the reflection and improve the light-trapping ability of PSCs. However, the development of STAF is hindered by many factors, such as expensive materials, low actual service life, unsatisfactory antireflective effect, and a lack of research on stability. This work proposes an ultraviolet (UV)-resistant enhanced sticker-type nanostructure acrylic resin antireflective film (SNAAF), which is applied to the incident surface of PSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!