After introducing pneumococcal conjugate vaccines (PCVs), serotype replacement occurred in . Predicting which pneumococcal strains will become common in carriage after vaccination can enhance vaccine design, public health interventions, and understanding of pneumococcal evolution. Invasive pneumococcal isolates were collected during 1998-2018 by the Active Bacterial Core surveillance (ABCs). Carriage data from Massachusetts (MA) and Southwest United States were used to calculate weights. Using pre-vaccine data, serotype-specific inverse-invasiveness weights were defined as the ratio of the proportion of the serotype in carriage to the proportion in invasive data. Genomic data were processed under bioinformatic pipelines to define genetically similar sequence clusters (i.e., strains), and accessory genes (COGs) present in 5-95% of isolates. Weights were applied to adjust observed strain proportions and COG frequencies. The negative frequency-dependent selection (NFDS) model predicted strain proportions by calculating the post-vaccine strain composition in the weighted invasive disease population that would best match pre-vaccine COG frequencies. Inverse-invasiveness weighting increased the correlation of COG frequencies between invasive and carriage data in linear or logit scale for pre-vaccine, post-PCV7, and post-PCV13; and between different epochs in the invasive data. Weighting the invasive data significantly improved the NFDS model's accuracy in predicting strain proportions in the carriage population in the post-PCV13 epoch, with the adjusted increasing from 0.254 before weighting to 0.545 after weighting. The weighting system adjusted invasive disease data to better represent the pneumococcal carriage population, allowing the NFDS mechanism to predict strain proportions in carriage in the post-PCV13 epoch. Our methods enrich the value of genomic sequences from invasive disease surveillance.IMPORTANCE, a common colonizer in the human nasopharynx, can cause invasive diseases including pneumonia, bacteremia, and meningitis mostly in children under 5 years or older adults. The PCV7 was introduced in 2000 in the United States within the pediatric population to prevent disease and reduce deaths, followed by PCV13 in 2010, PCV15 in 2022, and PCV20 in 2023. After the removal of vaccine serotypes, the prevalence of carriage remained stable as the vacated pediatric ecological niche was filled with certain non-vaccine serotypes. Predicting which pneumococcal clones, and which serotypes, will be most successful in colonization after vaccination can enhance vaccine design and public health interventions, while also improving our understanding of pneumococcal evolution. While carriage data, which are collected from the pneumococcal population that is competing to colonize and transmit, are most directly relevant to evolutionary studies, invasive disease data are often more plentiful. Previously, evolutionary models based on negative frequency-dependent selection (NFDS) on the accessory genome were shown to predict which non-vaccine strains and serotypes were most successful in colonization following the introduction of PCV7. Here, we show that an inverse-invasiveness weighting system applied to invasive disease surveillance data allows the NFDS model to predict strain proportions in the projected carriage population in the post-PCV13/pre-PCV15 and pre-PCV20 epoch. The significance of our research lies in using a sample of invasive disease surveillance data to extend the use of NFDS as an evolutionary mechanism to predict post-PCV13 population dynamics. This has shown that we can correct for biased sampling that arises from differences in virulence and can enrich the value of genomic data from disease surveillance and advance our understanding of how NFDS impacts carriage population dynamics after both PCV7 and PCV13 vaccination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481909 | PMC |
http://dx.doi.org/10.1128/mbio.03355-23 | DOI Listing |
Respir Res
January 2025
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Introduction And Objectives: High flow nasal cannula (HFNC) therapy is an increasingly popular mode of non-invasive respiratory support for the treatment of patients with acute hypoxemic respiratory failure (AHRF). Previous experimental studies in healthy subjects have established that HFNC generates flow-dependent positive airway pressures, but no data is available on the levels of mean airway pressure (mP) or positive end-expiratory pressure (PEEP) generated by HFNC therapy in AHRF patients. We aimed to estimate the airway pressures generated by HFNC at different flow rates in patients with AHRF, whose functional lung volume may be significantly reduced compared to healthy subjects due to alveolar consolidation and/or collapse.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.
Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.
View Article and Find Full Text PDFRespir Res
January 2025
Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.
Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.
View Article and Find Full Text PDFBackground: Dental caries is one of the most common non-communicable diseases in humans. Various interventions are available for the management, of which microinvasive techniques such as infiltration, sealants, glass ionomers, are novel and convenient. The purpose of this systematic review and meta-analysis was to compare microinvasive techniques with noninvasive or invasive treatment modalities in terms of effectiveness in halting interproximal caries lesion progression radiographically assessed.
View Article and Find Full Text PDFBMC Biol
January 2025
Department of Environmental Sciences, University of Basel, Basel, Switzerland.
Background: Treponemal diseases are a significant global health risk, presenting challenges to public health and severe consequences to individuals if left untreated. Despite numerous genomic studies on Treponema pallidum and the known possible biases introduced by the choice of the reference genome used for mapping, few investigations have addressed how these biases affect phylogenetic and evolutionary analysis of these bacteria. In this study, we ascertain the importance of selecting an appropriate genomic reference on phylogenetic and evolutionary analyses of T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!