Polymer dielectrics that perform efficiently under harsh electrification conditions are critical elements of advanced electronic and power systems. However, developing polymer dielectrics capable of reliably withstanding harsh temperatures and electric fields remains a fundamental challenge, requiring a delicate balance in dielectric constant (K), breakdown strength (E), and thermal parameters. Here, amide crosslinking networks into cyano polymers is introduced, forming asymmetric dipole pairs with differing dipole moments. This strategy weakens the original electrostatic interactions between dipoles, thereby reducing the dipole orientation barriers of cyano groups, achieving dipole activation while suppressing polarization losses. The resulting styrene-acrylonitrile/crosslinking styrene-maleic anhydride (SAN/CSMA) blends exhibit a K of 4.35 and an E of 670 MV m simultaneously at 120 °C, and ultrahigh discharged energy densities (U) with 90% efficiency of 8.6 and 7.4 J cm at 120 and 150 °C are achieved, respectively, more than ten times that of the original dielectric at the same conditions. The SAN/CSMA blends show excellent cyclic stability in harsh conditions. Combining the results with SAN/CSMA and ABS (acrylonitrile-butadiene-styrene copolymer)/CSMA blends, it is demonstrated that this novel strategy can meet the demands of high-performing dielectric polymers at elevated temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11516106 | PMC |
http://dx.doi.org/10.1002/advs.202405730 | DOI Listing |
Nano Lett
January 2025
IBM Research─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
The inhomogeneous magnetic stray field of micromagnets has been extensively used to manipulate electron spin qubits. By means of micromagnetic simulations and scanning superconducting quantum interference device microscopy, we show that the polycrystallinity of the magnet and nonuniform magnetization significantly impact the stray field and corresponding qubit properties. The random orientation of the crystal axis in polycrystalline Co magnets alters the qubit frequencies by up to 0.
View Article and Find Full Text PDFAdv Mater
January 2025
Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Achieving optimal capacitive energy storage performance necessitates the integration of high energy storage density, typical of ferroelectric dielectrics, with the low polarization loss associated with linear dielectrics. However, combining these characteristics in a single dielectric material is challenging due to the inherent contradictions between the spontaneous polarization of ferroelectric dielectrics and the adaptability of linear dielectrics to changes in the electric field. To address this issue, a linear isotactic sulfonylated polynorbornene dielectric characterized by ferroelectric-like crystals has been developed.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
We investigated the gas-liquid interface of aqueous solutions containing phenol and related aromatic compounds using extreme ultraviolet laser photoelectron spectroscopy and molecular dynamics simulations. The interfacial densities of protonated and deprotonated forms of phenol, aniline, and 4-nitrophenol were found to be primarily determined by their surface affinities and exhibit similar concentration dependences to their respective bulk densities. Despite the distinct interfacial orientations of their permanent dipole moments, these compounds monotonically decreased the surface potential at higher concentrations.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation ( ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for (e.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, PR China.
The interfacial molecular dipole enhances the photovoltaic performance of perovskite solar cells (PSCs) by facilitating improved charge extraction. However, conventional self-assembled monolayers (SAMs) face challenges like inadequate interface coverage and weak dipole interactions. Herein, we develop a strategy using a self-assembled ferroelectric layer to modify the interfacial properties of PSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!