Background: Alzheimer's disease (AD) is a neurodegenerative disease that remains a serious global health issue. Ferroptosis has been recognized as a vital driver of pathological progression of AD. However, the detailed regulatory mechanisms of ferroptosis during AD progression remain unclear. This study aimed to explore the regulatory role and mechanism of methyltransferase like 14 (METTL14) in ferroptosis in AD models.
Methods: Serum samples were collected from 18 AD patients and 18 healthy volunteers to evaluate clinical correlation. Scopolamine-treated mice and Aβ1-42-stimulated SH-SY5Y cells were served as the and models of AD. Ferroptosis was detected by reactive oxygen species (ROS), Fe, total iron levels, and ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. The N6-methyladenosine (m6A) modification was detected by RNA methylation quantification kit and methylated RNA immunoprecipitation sequencing-quantitative real-time polymerase chain reaction (MeRIP-qPCR). Molecular mechanisms were investigated by RNA pull-down, RNA immunoprecipitation (RIP), and co-immunoprecipitation (Co-IP) assays. Cognitive disorder of AD mice was measured by Morris water maze test.
Results: METTL14 was down-regulated, while lncRNA taurine upregulated gene 1 () was up-regulated in clinical patients and experimental models of AD. Functional experiments demonstrated that METTL14 overexpression or silencing effectively attenuated Aβ1-42-induced ferroptosis and neurotoxicity in SH-SY5Y cells. Mechanistically, METTL14-mediated m6A modification reduced the stability of . Moreover, promoted the ubiquitination and degradation of growth differentiation factor 15 (GDF15) by directly interacted with Smad ubiquitin regulatory factor 1 (SMURF1), which consequently inactivated nuclear factor erythroid 2-related factor 2 (NRF2). Rescue experiments indicated that GDF15 depletion reversed sh--mediated protection against ferroptosis and neurotoxicity. Finally, Mettl14 overexpression repressed ferroptosis to ameliorate the cognitive disorder via modulating /Gdf15/Nrf2 pathway .
Conclusion: METTL14 inhibited ferroptosis to ameliorate AD pathological development by m6A modification of to activate GDF15/NRF2 axis, providing a novel therapeutic target for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/j.fbl2908298 | DOI Listing |
Mol Genet Genomics
January 2025
Department of Emergency, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
Acute kidney injury (AKI) is one of the most serious and common complications in the course of sepsis, known for its poor prognosis and high mortality rate. Recently, ferroptosis, as a newly discovered regulatory cell death, might be closely associated with the progression of AKI. METTL14 is a writer of RNA m6A, an abundant epigenetic modification in transcriptome with broad function.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Department of Orthopaedics, Shaanxi Rehbilitation Hospital, Xi'an, Shaanxi, China.
Background: Osteoarthritis (OA) is one of the most common bone disorders and has a serious impact on the quality of life of patients. LncRNA-HCP5 (HCP5) is downregulated in OA tissues. However, the latent function and regulatory mechanisms of HCP5 in OA are unclear.
View Article and Find Full Text PDFBiol Direct
January 2025
Department of Urology, The First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning, China.
Background: Bladder cancer (BC) is a malignant tumor. Methyltransferase-like 7B (MEETL7B) is a methyltransferase and its role in BC has not yet been revealed.
Method: Stable METTL7B knockdown or overexpression were achieved by lentiviral transduction in SW780 and TCCSUP cell lines.
Cell Mol Biol Lett
January 2025
Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain.
Hakai protein (CBLL1 gene) was identified as an E3 ubiquitin ligase of E-cadherin complex, inducing its ubiquitination and degradation, thus inducing epithelial-to-mesenchymal transition. Most of the knowledge about the protein was associated to its E3 ubiquitin ligase canonical role. However, important recent published research has highlighted the noncanonical role of Hakai, independent of its E3 ubiquitin ligase activity, underscoring its involvement in the N-methyladenosine (mA) writer complex and its impact on the methylation of RNA.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China.
Emerging evidence has shown that the N-methyladenosine (mA) modification of RNA plays key roles in tumorigenesis and the progression of various cancers. However, the potential roles of the mA modification of long noncoding RNAs (lncRNAs) in pancreatic cancer (PaCa) are still unknown. To analyze the prognostic value of mA-related lncRNAs in PaCa, an m6A-related lncRNA signature was constructed as a risk model via Pearson's correlation and univariate Cox regression analyses in The Cancer Genome Atlas (TCGA) database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!