Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Chemotherapy resistance is an obstacle to promoting the survival of patients with hepatocellular carcinoma (HCC). Thus, finding promising therapeutic targets to enhance HCC chemotherapy is necessary.
Methods: Signal sequence receptor subunit (SSR2) expression analysis was performed using quantitative real time polymerase chain reaction (qPCR) and Western blotting assays. Colony formation, apoptosis, anchorage-independent growth assay, and animal models were used to investigate the effect of SSR2 expression on the resistance of HCC cells to Cisplatin (DDP). Western blotting and luciferase reporter gene techniques were used to explore the molecular mechanism of SSR2 on the resistance of HCC cells to DDP.
Results: We found that the SSR2 is upregulated in HCC and associated with poor survival. Further analysis showed that the downregulation of SSR2 increased the sensitivity of HCC to DDP. Mechanically, SSR2 inhibited the Yes-associated protein (YAP) phosphorylation and promoted the transcription of Hippo signaling downstream genes. Finally, the Hippo pathway inhibitor can suppress colony formation and tumorigenesis arising from SSR2 upregulation.
Conclusions: Our study shows that SSR2 is important in HCC progression via the Hippo pathway. Thus, targeting the SSR2/Hippo axis might be a potential strategy for overcoming HCC resistance to DDP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/j.fbl2908299 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!