Nano/microfabrication is of fundamental importance both in scientific and industrial situations. There are, therefore, many attempts at realizing easier, quicker, and more precise fabrication of various structures; however, achieving this aim without a bulky and costly setup is still challenging. Here, we introduce a facile and versatile means of printing an ordered structure consisting of nanoscale stripes and more complicated geometries including pillars and wavy form with a lateral resolution of single micrometers. To this end, we prepare a polydimethylsiloxane (PDMS) slab with an oxygen plasma-induced wrinkled surface where liquid PDMS exudes by syneresis. Since this liquid PDMS is automatically loaded, the printing is repeatable without inking. A substrate moderately wettable to the liquid PDMS as well as amount/property-controlled syneresis is primarily important for the creation of well-defined structures. Precisely controlling these conditions will make this method universally applicable to diverse substrates and liquids including suspensions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515907 | PMC |
http://dx.doi.org/10.1002/advs.202405151 | DOI Listing |
J Chromatogr A
December 2024
Univ Rouen Normandie, FR3038, SMS, UR 3233, F-76000 Rouen, France. Electronic address:
In this study, a novel imidazolium-based ionic liquid (IL) coating was developed for stir bar sorptive extraction (SBSE) using a sol-gel method. The effects of different counterions, conditioning temperatures and polymer compositions were investigated. The stir bar with bis((trifluoromethyl)sulfonyl) amide 1-butyl-3-(3-(triethoxysilyl)propyl)-1H-imidazol-3-ium showed good mechanical and thermal stability with high resistance to water solubilization.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-Gu, Seoul 06978, Republic of Korea.
Gallium-based liquid metals remain in a liquid state at room temperature and exhibit excellent electrical and thermal conductivities, low viscosity, and low toxicity, making them ideal for creating highly stretchable and conductive composites suitable for flexible electronic devices. Despite these benefits, conventional single-layer liquid metal composites face challenges, such as liquid metal leakage during deformation (e.g.
View Article and Find Full Text PDFSci Rep
January 2025
Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Unit of Chemical Technologies, Technology Centre of Catalonia, Eurecat, 43007 Tarragona, Spain.
The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, PR China.
The increasing demand for high-performance strain sensors has driven the development of innovative composite systems. This study focused on enhancing the performance of composites by integrating liquid metal, carbon nanotubes, and polydimethylsiloxane (PDMS) in an innovative approach that involved advanced interface engineering, filler synergy, and in situ cross-linking of PDMS in solution. Surface modification of liquid metal with allyl disulfide and hydrogen-containing polydimethylsiloxane significantly improved its stability and dispersion within the polymer matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!