A highly effective and enantioselective vinylogous Mannich reaction between benzothiazolimines and γ-butenolides catalyzed by a quinine based squaramide has been disclosed. A series of chiral benzothiazole amines containing a γ,γ-disubstituted butanolide scaffold bearing an adjacent chiral stereocenter have been successfully obtained in good to excellent yields (up to 91%) with excellent enantioselectivities (up to >99% ee) and diastereoselectivities (>20 : 1 dr) with broad substrate generality under mild conditions. The new scaffold integrated with both chiral benzothiazolimine and γ-butenolide moieties may provide a possibility for the development of new pharmaceutical entities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ob01175a | DOI Listing |
Org Lett
January 2025
School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China.
Treatment of multisubstituted NH-enesulfinamides with tosyl isocyanate (TsNCO) at room temperature results in the formation of α-tosylcarbamoyloxy -sulfenyl ketimines with high enantioselectivity. This process is believed to proceed via a vinylogous aza-Pummerer-type reaction pathway in which the sulfinyl oxygen atom in the enesulfinamides undergoes nucleophilic attack on tosyl isocyanate, triggering the subsequent transformations that enable the transfer of chirality from sulfur to carbon.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
Herein, we report a method for enantioselective vinylogous addition of enones to alkoxyallenes enabled by synergistic borane/palladium catalysis. The inductive effect provided by borane coordination to the ketone was essential for closing the gap between the conditions needed for the generation of a dienolate and those needed for initiation of the palladium catalytic cycle by protonation of the metal catalyst. Furthermore, we accomplished the first example of stereodivergent synthesis with chiral borane/transition-metal catalysts.
View Article and Find Full Text PDFJACS Au
November 2024
Department of Organic Chemistry, Indian Institute of Science, Bangalore560012, India.
Compared to the widely explored enol silanes, the applicability of their extended variants especially as bisvinylogous nucleophiles in enantioselective catalysis has been sparse. Herein, we describe the first enantioselective vinylogous and bisvinylogous allenylic substitution using silyl dienol and trienol ethers, respectively, as a nucleophile. With racemic allenylic alcohols as the electrophile, these enantioconvergent reactions are cooperatively catalyzed by an Ir(I)/(phosphoramidite,olefin) complex and Lewis acidic La(OTf) and display remarkable regio- and diastereoselectivity in most cases.
View Article and Find Full Text PDFJ Org Chem
December 2024
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
An organocatalytic asymmetric vinylogous Michael/oxa-Michael tandem reaction between β,γ-unsaturated pyrazoleamides and isatin-derived β,γ-unsaturated ketoesters has been developed with excellent regio-, diastereo-, and enantioselectivities. The methodology provides an effective approach to construct enantiomerically pure 3,4'-pyranyl spirooxindole derivatives containing three contiguous chiral centers. Moreover, the transformations of the chiral products, including the removal and reduction of the pyrazole group, have been investigated.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
The transition-metal-catalyzed alkenylation strategy of propargylic alcohol derivatives provides an efficient protocol to access multifunctional products in a double-nucleophilic attack pattern. While limited relevant asymmetric examples have been reported via palladium catalysis, here we first demonstrate that a nonprecious Ni(0)-based chiral complex can efficiently promote the tandem substitution process between propargylic carbonates and -trifluoroethyl ketimines via consecutive aza-vinylogous activations, finally accomplishing a (3 + 2) annulation reaction to afford products embedding a 4-methylene-3,4-dihydro-2-pyrrole framework with high regio-, diastereo-, and enantiocontrol. Their assemblies with a few all-carbon-based vinylogous precursors are also successful, and enantioenriched adducts containing a 3-methylenecyclopentene scaffold are furnished effectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!