Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent cumulative findings signify the adaptive immunity of materials as a key agenda in tissue healing that can improve regenerative events and outcomes. Modulating immune responses, mainly the recruitment and functions of T and B cells and their further interplay with innate immune cells (e.g., dendritic cells, macrophages) can be orchestrated by materials. For instance, decellularized matrices have been shown to promote muscle healing by inducing T helper 2 (Th2) cell immunity, while synthetic biopolymers exhibit differential effects on B cell responses and fibrosis compared decellularized matrices. We discuss the recent findings on how implantable materials instruct the adaptive immune events and the subsequent tissue healing process. In particular, we dissect the materials' physicochemical properties (shape, size, topology, degradation, rigidity, and matrix dynamic mechanics) to demonstrate the relations of these parameters with the adaptive immune responses and the underlying biological mechanisms. Furthermore, we present evidence of recent phenomena, including tissue healing, cancer progression, and fibrosis, wherein biomaterials potentially shape adaptive immune cell functions and outcomes. Our discussion will help understand the materials-regulated immunology events more deeply, and offer the design rationale of materials with tunable matrix properties for accelerated tissue repair and regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350271 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2024.07.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!