AI Article Synopsis

  • Surface modification methods like acid etching, sandblasting, and polydopamine coating were used on titanium disks to explore their effects on bioactivity and cell adhesion.
  • Research focused on the physical characteristics (such as surface roughness and wettability) and biological effects using human gingival fibroblast cells.
  • Results indicated that polydopamine-coated disks showed the best properties for promoting cell adhesion, suggesting they are a suitable option for implants in living organisms.

Article Abstract

Surface modification and biomimetic approaches have been widely used to enhance bioinert substances. It is not very clear whether surface alterations and polymer coatings on titanium make it more biologically active and enhance cell adhesion. We tried to focus on the physical and biological characterization of surface-modified titanium disks. Four different surface modifications were done for the titanium disks, ranging from acid etching, sandblasting, polydopamine coating, and polydopamine-based chitosan coating, and were compared with disks without any surface modification. The disks were studied for physical characteristics like surface roughness and contact angle. Human gingival fibroblasts were used to investigate the biological effects of surface modification of titanium alloy surfaces. The wettability of chitosan-coated, acid-etched, and polydopamine-coated titanium was much better than that of the sandblasted surface, indicating that surface energy was higher for acid-etched and coated surfaces than others. The cell seeding with fibroblasts showed increased adhesion to the smoother surfaces as compared to the rougher surfaces. Polydopamine coatings on titanium disks showed the most favorable physical and biological properties compared to others and can be a good surface coating for in vivo implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357819PMC
http://dx.doi.org/10.1155/2024/6662866DOI Listing

Publication Analysis

Top Keywords

surface modification
12
titanium disks
12
surface
9
characterization surface-modified
8
titanium alloy
8
coatings titanium
8
physical biological
8
disks surface
8
titanium
7
disks
5

Similar Publications

Plasma nitriding is one of the surface modifications that show more effectiveness than other methods. In this study, the plasma-based ion implantation (PBII) technique was performed on the surface of titanium alloy (Ti-6Al-4V, Ti64) using a mixture of nitrogen (N) and argon (Ar), resulting in a plasma-nitrided surface (TiN-Ti64). The surface composition of the TiN-Ti64 was verified through X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Healing the Cornea: Exploring the Therapeutic Solutions Offered by MSCs and MSC-derived EVs.

Prog Retin Eye Res

December 2024

Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland. Electronic address:

Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs).

View Article and Find Full Text PDF

In 2018 the European Commission adopted revisions to the Annexes of Regulation (EC) No 1907/2006 concerning registration, evaluation, authorisation and restriction of chemicals (REACH) to introduce nanomaterial-specific clarifications and provisions. Multicomponent nanomaterial (MCNM) is a non-regulatory term that has been used in recent EU-funded projects to describe nanomaterials with a complex structure and/or composition and which are expected to be increasingly used in products in the near future. This paper examines the regulatory preparedness of REACH, and its revised Annexes, for MCNMs.

View Article and Find Full Text PDF

Induction electric field (IEF) technology is a new green treatment technology based on electric field, and its application has not been widely reported, especially in the direction of soybean protein isolate (SPI) modification. Therefore, IEF and several commonly used physical modification methods were used to investigate the effect on the structure and interfacial properties of SPI. The IEF treatment was found to be superior to the other groups in terms of emulsification performance, solubility and flexibility, which were enhanced by 44.

View Article and Find Full Text PDF

Interfacial engineering for biomolecule immobilisation in microfluidic devices.

Biomaterials

December 2024

School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia. Electronic address:

Microfluidic devices are used for various applications in biology and medicine. From on-chip modelling of human organs for drug screening and fast and straightforward point-of-care (POC) detection of diseases to sensitive biochemical analysis, these devices can be custom-engineered using low-cost techniques. The microchannel interface is essential for these applications, as it is the interface of immobilised biomolecules that promote cell capture, attachment and proliferation, sense analytes and metabolites or provide enzymatic reaction readouts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!