This paper describes a method for recording X-ray diffraction patterns from a small amount of fibrous protein materials while being oriented by using a micro shear-flow cell. This cell consists of two concentrically arranged glass tubes. The inner tube is stationary, while the outer one rotates at a high speed. The gap between the two tubes is about 100 μm, into which the suspension of fibrous protein materials is injected. By using synchrotron-radiation X-ray microbeams (diameter, 10 μm), clear diffraction images from oriented protein materials can be recorded. The required volume of the sample is only about 10 μl. This method can also be combined with the laser-flash photolysis of caged compounds. Examples of application of this method to the flagella of a green alga , and sperm of a tunicate are presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347821PMC
http://dx.doi.org/10.2142/biophysico.bppb-v21.0014DOI Listing

Publication Analysis

Top Keywords

protein materials
16
fibrous protein
12
x-ray diffraction
8
small amount
8
amount fibrous
8
materials oriented
8
oriented micro
8
micro shear-flow
8
shear-flow cell
8
diffraction recording
4

Similar Publications

Background: Tinnitus refers to a common disorder affecting older adults frequently. This condition can disturb mental health and psychological well-being and contribute to cognitive decline. Despite recent advances in research, its pathophysiology remains incompletely understood.

View Article and Find Full Text PDF

Objectives: To compare the consolidation quality between the anteromedial aspect of regenerated bone (AMRB) and other areas of regenerated bone (TORB) following the induced membrane technique (IMT) for managing critical-sized tibial shaft bone defects, and determine the factors affecting consolidation quality in the AMRB.

Methods: Design: Retrospective comparative study.

Setting: Academic Level I trauma center.

View Article and Find Full Text PDF

Objective: To explore more and better liquid biopsy markers of exosomal microRNAs (exo-miRNAs) in renal interstitial fibrosis (RIF) and to preliminary investigate the biological functions and signaling pathways involved in these markers.

Materials And Methods: High-throughput miRNA sequencing was performed on blood and urine exo-miRNAs from three RIF patients and three healthy volunteers, and differential expression analysis and bioinformatic processing were performed.

Results: There were 13 differentially expressed exo-miRNA (DEexo-miRNA) between RIF and healthy blood, and 20 DEexo-miRNAs in urine.

View Article and Find Full Text PDF

Purpose: Epstein-Barr virus (EBV)-positive Burkitt lymphoma (BL) affects children in sub-Saharan Africa, but diagnosis via tissue biopsy is challenging. We explored a liquid biopsy approach using targeted next-generation sequencing to detect the -immunoglobulin (-Ig) translocation and EBV DNA, assessing its potential for minimally invasive BL diagnosis.

Materials And Methods: The panel included targets for the characteristic -Ig translocation, mutations in intron 1 of , mutations in exon 2 of , and three EBV genes: EBV-encoded RNA (EBER)1, EBER2, and EBV nuclear antigen 2.

View Article and Find Full Text PDF

Improving the Reliability of Language Model-Predicted Structures as Docking Targets through Geometric Graph Learning.

J Med Chem

January 2025

Hangzhou Carbonsilicon AI Technology Company Limited, Hangzhou 310018, Zhejiang, China.

Applying artificial intelligence techniques to flexibly model the binding between the ligand and protein has attracted extensive interest in recent years, but their applicability remains improved. In this study, we have developed CarsiDock-Flex, a novel two-step flexible docking paradigm that generates binding poses directly from predicted structures. CarsiDock-Flex consists of an equivariant deep learning-based model termed CarsiInduce to refine ESMFold-predicted protein pockets with the induction of specific ligands and our existing CarsiDock algorithm to redock the ligand into the induced binding pockets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!