Enhancing maize phosphorus uptake with optimal blends of high and low-concentration phosphorus fertilizers.

Front Plant Sci

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.

Published: August 2024

High-concentration phosphorus (P) fertilizers are crucial for crop growth. However, fertilizers with lower P concentrations, such as calcium magnesium phosphate (CMP) and single super phosphate (SSP), can also serve as efficient P sources, especially when blended with high-concentration P fertilizers like diammonium phosphate (DAP) or monoammonium phosphate (MAP). In this study, we conducted a 48-day pot experiment to explore how blending low-P fertilizers could optimize maize P utilization, using CMP to replace DAP in acidic soil, and SSP to replace MAP in alkaline soil, with five SSP+MAP and CMP+DAP mixtures tested. Key metrics such as shoot and root biomass, shoot P uptake, root length, and soil P bioavailability were measured. We found that maize biomass and P uptake with 100% DAP were comparable to those with 50% CMP and 50% DAP in acidic soil. Similar results were observed for 100% MAP compared to 50% SSP and 50% DAP in alkaline soil. Root biomass and length were largest with 100% MAP in acidic soil and at 100% DAP in alkaline soil, with no significant differences at 50% SSP or CMP substitutions for MAP and DAP, respectively. Furthermore, 50% SSP or CMP substitutions for MAP and DAP increased the content and proportion of the labile inorganic P (Pi) pool (HO-Pi and NaHCO-Pi), had a direct and positive effect on Olsen-P. Our findings reveal that 1:1 blends of SSP and MAP in acidic soil, and CMP and DAP in alkaline soil, effectively meet maize's P requirements without relying solely on high-concentration P fertilizers. This indicates that strategic blending of fertilizers can optimize P use, which is crucial for sustainable agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349670PMC
http://dx.doi.org/10.3389/fpls.2024.1451073DOI Listing

Publication Analysis

Top Keywords

acidic soil
16
alkaline soil
16
50% ssp
12
dap alkaline
12
dap
9
soil
9
phosphorus fertilizers
8
high-concentration fertilizers
8
fertilizers optimize
8
dap acidic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!