Stimuli-responsive ultralong organic phosphorescence (UOP) materials that in response to external factors such as light, heat, and atmosphere have raised a tremendous research interest in fields of optoelectronics, anticounterfeiting labeling, biosensing, and bioimaging. However, for practical applications in life and health fields, some fundamental requirements such as biocompatibility and biodegradability are still challenging for conventional inorganic and aromatic-based stimuli-responsive UOP systems. Herein, an edible excipient, sodium carboxymethyl cellulose (SCC), of which UOP properties exhibit intrinsically multistimuli responses to excited wavelength, pressure, and moisture, is reported. Impressively, as a UOP probe, SCC enables nondestructive detection of hardness with superb contrast (signal-to-background ratio up to 120), while exhibiting a response sensitivity to moisture that is more than 5.0 times higher than that observed in conventional fluorescence. Additionally, its applicability for hardness monitoring and high-moisture warning for tablets containing a moisture-sensitive drug, with the quality of the drug being determinable through the naked-eye visible UOP, is demonstrated. This work not only elucidates the reason for stimulative corresponding properties in SCC but also makes a major step forward in extending the potential applications of stimuli-responsive UOP materials in manufacturing high-quality and safe medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202406618 | DOI Listing |
Small
December 2024
Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China.
Ultralong room-temperature phosphorescent (URTP) materials have garnered significant attention in anti-counterfeiting, optoelectronic displays, and bio-imaging due to their unique optical properties. However, most URTP materials exhibit weak emission or are quenched in aqueous solutions. This study proposes a simple and effective strategy for preparing full-color aqueous URTP materials using a one-step microwave method.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Aqueous Zinc-iodine batteries (ZIBs) are widely viewed as promising energy storage devices due to their high energy density and intrinsic safety. However, they encounter great challenges such as grievous polyiodides shuttle and sluggish iodine (I) redox reaction kinetics, thus undesirable cycling performance. Here a high-performance ZIB with an ultra-long lifespan is reported through the rational I cathode catalyst design.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China.
Visible-light-excited ultralong organic phosphorescence (UOP) materials hold significant potential for various practical applications. Red-shifted excitation wavelength can be achieved by introducing large π-conjugation structures into organic molecules, thereby increasing intermolecular interactions and coupling. However, generating visible-light-excited UOP from isolated molecules poses a great challenge.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an, 710072, China.
The success of achieving scale-up deployment of zinc ion batteries is to selectively regulate the rapid and dendrite-free growth of zinc anodes. Herein, this is proposed that a creative design strategy of constructing multi-functional separators (MFS) to stabilize the zinc anodes. By in situ decorating metal-organic-framework coating on commercial glass fiber, the upgraded separator is of remarkable benefit for strong anion (SO ) anchoring, uniform ion flux across the interface, and boosted Zn desolvation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!