Resting-State Functional Connectivity of the Amygdala in Autism: A Preregistered Large-Scale Study.

Am J Psychiatry

Department of Psychological and Brain Sciences (Kliemann, Van De Water, Egger), Department of Psychiatry (Kliemann), and Iowa Neuroscience Institute (Kliemann, Van De Water), University of Iowa, Iowa City; Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena (Kliemann, Adolphs); School of Informatics, University of Edinburgh, Edinburgh (Galdi); McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Mass. (Jarecka, Ghosh); Division of Biology and Biological Engineering and Chen Neuroscience Institute, California Institute of Technology, Pasadena (Adolphs); Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston (Ghosh).

Published: December 2024

Objective: Three leading neurobiological hypotheses about autism spectrum disorder (ASD) propose underconnectivity between brain regions, atypical function of the amygdala, and generally higher variability between individuals with ASD than between neurotypical individuals. Past work has often failed to generalize, because of small sample sizes, unquantified data quality, and analytic flexibility. This study addressed these limitations while testing the above three hypotheses, applied to amygdala functional connectivity.

Methods: In a comprehensive preregistered study, the three hypotheses were tested in a subset (N=488 after exclusions; N=212 with ASD) of the Autism Brain Imaging Data Exchange data sets. The authors analyzed resting-state functional connectivity (FC) from functional MRI data from two anatomically defined amygdala subdivisions, in three hypotheses with respect to magnitude, pattern similarity, and variability, across different anatomical scales ranging from whole brain to specific regions and networks.

Results: A Bayesian approach to hypothesis evaluation produced inconsistent evidence in ASD for atypical amygdala FC magnitude, strong evidence that the multivariate pattern of FC was typical, and no consistent evidence of increased interindividual variability in FC. The results strongly depended on analytic choices, including preprocessing pipeline for the neuroimaging data, anatomical specificity, and subject exclusions.

Conclusions: A preregistered set of analyses found no reliable evidence for atypical functional connectivity of the amygdala in autism, contrary to leading hypotheses. Future studies should test an expanded set of hypotheses across multiple processing pipelines, collect deeper data per individual, and include a greater diversity of participants to ensure robust generalizability of findings on amygdala FC in ASD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667795PMC
http://dx.doi.org/10.1176/appi.ajp.20230249DOI Listing

Publication Analysis

Top Keywords

functional connectivity
12
three hypotheses
12
resting-state functional
8
connectivity amygdala
8
amygdala autism
8
amygdala
7
hypotheses
6
data
6
asd
5
autism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!