A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of model-integrated evidence approaches for pharmacokinetic bioequivalence studies using model averaging methods. | LitMetric

Conventional approaches for establishing bioequivalence (BE) between test and reference formulations using non-compartmental analysis (NCA) may demonstrate low power in pharmacokinetic (PK) studies with sparse sampling. In this case, model-integrated evidence (MIE) approaches for BE assessment have been shown to increase power, but may suffer from selection bias problems if models are built on the same data used for BE assessment. This work presents model averaging methods for BE evaluation and compares the power and type I error of these methods to conventional BE approaches for simulated studies of oral and ophthalmic formulations. Two model averaging methods were examined: bootstrap model selection and weight-based model averaging with parameter uncertainty from three different sources, either from a sandwich covariance matrix, a bootstrap, or from sampling importance resampling (SIR). The proposed approaches increased power compared with conventional NCA-based BE approaches, especially for the ophthalmic formulation scenarios, and were simultaneously able to adequately control type I error. In the rich sampling scenario considered for oral formulation, the weight-based model averaging method with SIR uncertainty provided controlled type I error, that was closest to the target of 5%. In sparse-sampling designs, especially the single sample ophthalmic scenarios, the type I error was best controlled by the bootstrap model selection method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494900PMC
http://dx.doi.org/10.1002/psp4.13217DOI Listing

Publication Analysis

Top Keywords

model averaging
20
type error
16
averaging methods
12
model-integrated evidence
8
methods conventional
8
conventional approaches
8
bootstrap model
8
model selection
8
weight-based model
8
model
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!