Metamaterial Broadband Absorber Induced by Synergistic Regulation of Temperature and Electric Field and Its Optical Switching Application.

Sensors (Basel)

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Published: August 2024

Nowadays, metamaterial absorbers still suffer from limited bandwidth, poor bandwidth scalability, and insufficient modulation depth. In order to solve this series of problems, we propose a metamaterial absorber based on graphene, VO, gallium silver sulfide, and gold-silver alloy composites with dual-control modulation of temperature and electric field. Then we further investigate the optical switching performance of this absorber in this work. Our proposed metamaterial absorber has the advantages of broad absorption bandwidth, sufficient modulation depth, and good bandwidth scalability all together. Unlike the single inspired layer of previous designs, we innovatively adopted a multi-layer excitation structure, which can realize the purpose of absorption and bandwidth width regulation by a variety of means. Combined with the finite element analysis method, our proposed metamaterial absorber has excellent bandwidth scalability, which can be tuned from 2.7 THz bandwidth to 12.1 THz bandwidth by external electrothermal excitation. Meanwhile, the metamaterial absorber can also dynamically modulate the absorption from 3.8% to 99.8% at a wide incidence angle over the entire range of polarization angles, suggesting important potential applications in the field of optical switching in the terahertz range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359147PMC
http://dx.doi.org/10.3390/s24165430DOI Listing

Publication Analysis

Top Keywords

metamaterial absorber
16
optical switching
12
bandwidth scalability
12
temperature electric
8
electric field
8
field optical
8
bandwidth
8
modulation depth
8
proposed metamaterial
8
absorption bandwidth
8

Similar Publications

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Temperature-Robust Broadband Metamaterial Absorber via Semiconductor MOFs/Paraffin Hybridization.

Small

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.

View Article and Find Full Text PDF

In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.

View Article and Find Full Text PDF

Ultra-Broadband Perfect Absorbers Based on Biomimetic Metamaterials with Dual Coupling Gradient Resonators.

Adv Mater

December 2024

Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China.

Ultra-broadband metamaterial absorbers can achieve near-perfect absorption of omnidirectional electromagnetic waves, crucial for light utilization and manipulation. Traditional ultra-broadband metamaterials rely on the superposition of different resonator units either in the plane or in perpendicular directions to broaden absorption peaks. However, this approach is subject to quantity restrictions and complicates the fabrication process.

View Article and Find Full Text PDF

Parallel mechanical computing: Metamaterials that can multitask.

Proc Natl Acad Sci U S A

December 2024

Department of Mechanical and Aerospace Engineering, University at Buffalo (State University of New York), Buffalo, NY 14260-4400.

Decades after being replaced with digital platforms, analogue computing has experienced a surging interest following developments in metamaterials and intricate fabrication techniques. Specifically, wave-based analogue computers which impart spatial transformations on an incident wavefront, commensurate with a desired mathematical operation, have gained traction owing to their ability to directly encode the input in its unprocessed form, bypassing analogue-to-digital conversion. While promising, these systems are inherently limited to single-task configurations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!