Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fire blight is an infectious disease found in apple and pear orchards. While managing the disease is critical to maintaining orchard health, identifying symptoms early is a challenging task which requires trained expert personnel. This paper presents an inspection technique that targets individual symptoms via deep learning and density estimation. We evaluate the effects of including multi-spectral sensors in the model's pipeline. Results show that adding near infrared (NIR) channels can help improve prediction performance and that density estimation can detect possible symptoms when severity is in the mid-high range.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359518 | PMC |
http://dx.doi.org/10.3390/s24165387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!