This paper demonstrates the design steps of a slot-loaded Vivaldi antenna for biomedical microwave imaging applications, showing the influence of the design parameters on the antenna's dimensions and performances. Several antenna miniaturization techniques were taken into consideration during the design: reduction in the electromagnetic wavelength by using a high-permittivity substrate material (relative permittivity ϵr=10.2), the placement of the antenna inside a coupling medium (ϵr=23), and the elongation of the current path by etching slots on each side of the radiator to reduce the antenna's lowest resonant frequency without increasing its physical dimensions. Moreover, an analysis of different antenna slot design scenarios was performed considering different slot lengths, inclination angles, positions, and numbers. Considering the frequency range of microwave imaging (i.e., about 500 MHz-5 GHz) and the array arrangement typical of microwave imaging, the best design was chosen. Finally, the antenna was fabricated and its performances in the coupling medium were characterized. The simulation and measurement results showed good agreement between each other. In comparison with literature antennas, the one developed in this work shows wide bandwidth and compact dimensions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359873PMC
http://dx.doi.org/10.3390/s24165368DOI Listing

Publication Analysis

Top Keywords

microwave imaging
16
slot-loaded vivaldi
8
vivaldi antenna
8
antenna biomedical
8
biomedical microwave
8
imaging applications
8
influence design
8
design parameters
8
parameters antenna's
8
antenna's dimensions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!