In recent years, single-source-data-based deep learning methods have made considerable strides in the field of fault diagnosis. Nevertheless, the extraction of useful information from multi-source data remains a challenge. In this paper, we propose a novel approach called the Genetic Simulated Annealing Optimization (GASA) method with a multi-source data convolutional neural network (MSCNN) for the fault diagnosis of rolling bearing. This method aims to identify bearing faults more accurately and make full use of multi-source data. Initially, the bearing vibration signal is transformed into a time-frequency graph using the continuous wavelet transform (CWT) and the signal is integrated with the motor current signal and fed into the network model. Then, a GASA-MSCNN fault diagnosis method is established to better capture the crucial information within the signal and identify various bearing health conditions. Finally, a rolling bearing dataset under different noisy environments is employed to validate the robustness of the proposed model. The experimental results demonstrate that the proposed method is capable of accurately identifying various types of rolling bearing faults, with an accuracy rate reaching up to 98% or higher even in variable noise environments. The experiments reveal that the new method significantly improves fault detection accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360258 | PMC |
http://dx.doi.org/10.3390/s24165285 | DOI Listing |
ISA Trans
January 2025
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
This paper addresses the critical challenge of interpretability in machine learning methods for machine fault diagnosis by introducing a novel ad hoc interpretable neural network structure called Sparse Temporal Logic Network (STLN). STLN conceptualizes network neurons as logical propositions and constructs formal connections between them using specified logical operators, which can be articulated and understood as a formal language called Weighted Signal Temporal Logic. The network includes a basic word network using wavelet kernels to extract intelligible features, a transformer encoder with sparse and structured neural attention to locate informative signal segments relevant to decision-making, and a logic network to synthesize a coherent language for fault explanation.
View Article and Find Full Text PDFPLoS One
January 2025
Automation School Guangdong University of Petrochemical Technology, Maoming, Guangdong, China.
Centrifugal compressors are widely used in the oil and natural gas industry for gas compression, reinjection, and transportation. Fault diagnosis and identification of centrifugal compressors are crucial. To promptly monitor abnormal changes in compressor data and trace the causes leading to these data anomalies, this paper proposes a security monitoring and root cause tracing method for compressor data anomalies.
View Article and Find Full Text PDFCondition monitoring and fault classification in engineering systems is a critical challenge within the scope of Prognostics and Health Management (PHM). The fault diagnosis of complex nonlinear systems, such as hydraulic systems, has become increasingly important due to advancements in big data analytics, machine learning (ML), Industry 4.0, and Internet of Things (IoT) applications.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Key Laboratory of Autonomous Systems and Network Control, Ministry of Education, South China University of Technology, Guangzhou, 510640, China; Institute for Super Robotics (Huangpu), Guangzhou, 510555, China; Nanchang University, Nanchang, 330031, China; College of Computer Science and Engineering, Jishou University, Jishou, 416000, China; Guangdong Artificial Intelligence and Digital Economy Laboratory (Pazhou Lab), Guangzhou, 510335, China; School of Electronical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China; School of Information Science and Engineering, Changsha Normal University, Changsha, 410100, China; Institute of Artificial Intelligence and Automation, Guangdong University of Petrochemical Technology, Maoming, 525000, China. Electronic address:
To address the challenge of low recognition accuracy in transformer fault detection, a novel method called swarm budorcas taxicolor optimization-based multi-support vector (SBTO-MSV) is proposed. Firstly, a multi-support vector (MSV) model is proposed to realize multi-classification of transformer faults based on dissolved gas data. Then, a swarm budorcas taxicolor optimization (SBTO) algorithm is proposed to iteratively search the optimal model parameters during MSV model training, so as to obtain the most effective transformer fault diagnosis model.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
School of Information Engineering, Nantong Institute of Technology, Nantong 226002, Jiangsu, China.
As an essential component of mechanical systems, bearing fault diagnosis is crucial to ensure the safe operation of the equipment. However, vibration data from bearings often exhibit non-stationary and nonlinear features, which complicates fault diagnosis. To address this challenge, this paper introduces a novel multi-scale time-frequency and statistical features fusion model (MTSF-FM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!