Deploying distributed fiber-optic sensor (DFOS) technology to gather environmental parameters over expansive areas is an essential monitoring strategy in the context of comprehensive searches for anomalous places. This study utilizes a single temperature measurement channel within a commercial Raman-based distributed temperature sensing (RDTS) interrogator and divides it into two separate, uncorrelated paths to enable spatial duplex temperature measurements. The distinction between temperature events corresponding to each path in the dual separate path (DSP) in RDTS can be achieved when temperature events are concurrently occurring in the DSP. Additionally, the RDTS-DSP solution may integrate free space optics (FSO) into its fiber path, which serves to enhance the user-friendliness, scalability, and cost-effectiveness of DFOS technology. An RDTS measurement channel can effectively function as a DSP, thus doubling the RDTS measurement pathway, and can be combined with FSO to significantly improve RDTS performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360438 | PMC |
http://dx.doi.org/10.3390/s24165277 | DOI Listing |
Environ Technol
January 2025
Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610213, P. R. China.
The self-assembly of macromolecular segments promotes the fabrication of polymer microspheres with multiple morphologies. Inspired by the xanthium shells, A dual-driven self-assembly method have defined that enables the construction of multi-dimensional morphologies on the microsphere surface at emulsion-confined interfaces. The two driving forces are derived from the phase separation caused by the immiscibility of macromolecular segments and the different interactions between chain segments of different hydrophilicity and water molecules.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
The development of viscous-crude oil and water separation technology is important for overcoming pollution caused by oil spills. Although some separators responding to light, electric, and temperature have been proposed, their poor structural homogeneity and inferior controllability, together with weak capillary forces, hinder the rapid salvage of viscous crude oil. Herein, a Joule-heated hydrophobic porous oil/water separator is reported, which has advantages of low energy consumption (169.
View Article and Find Full Text PDFBMC Cancer
January 2025
Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.
Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.
Langmuir
January 2025
Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
Simultaneously hydrophilic and oleophobic surfaces offer substantial advantages for applications such as antifogging, self-cleaning, and oil-water separation. It remains challenging to engineer such surfaces without requiring polar functional groups. This study introduces HFIL, a novel ionic liquid (IL) coating that achieves simultaneous hydrophilic and oleophobic properties via a one-step dip-coating process without relying on polar functional groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!