To address the issues of inadequate feature extraction for rolling bearings, inaccurate fault diagnosis, and overfitting in complex operating conditions, this paper proposes a rolling bearing diagnosis method based on multi-scale feature fusion and transfer adversarial learning. Firstly, a multi-scale convolutional fusion layer is designed to effectively extract fault features from the original vibration signals at multiple time scales. Through a feature encoding fusion module based on the multi-head attention mechanism, feature fusion extraction is performed, which can model long-distance contextual information and significantly improve diagnostic accuracy and anti-noise capability. Secondly, based on the domain adaptation (DA) cross-domain feature adversarial learning strategy of transfer learning methods, the extraction of optimal domain-invariant features is achieved by reducing the gap in data distribution between the target domain and the source domain, addressing the call for research on fault diagnosis across operating conditions, equipment, and virtual-real migrations. Finally, experiments were conducted to verify and optimize the effectiveness of the feature extraction and fusion network. A public bearing dataset was used as the source domain data, and special vehicle bearing data were selected as the target domain data for comparative experiments on the effect of network transfer learning. The experimental results demonstrate that the proposed method exhibits an exceptional performance in cross-domain and variable load environments. In multiple bearing cross-domain transfer learning tasks, the method achieves an average migration fault diagnosis accuracy rate of up to 98.65%. When compared with existing methods, the proposed method significantly enhances the ability of data feature extraction, thereby achieving a more robust diagnostic performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360228 | PMC |
http://dx.doi.org/10.3390/s24165181 | DOI Listing |
Talanta
January 2025
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China. Electronic address:
Dissolved gas analysis (DGA) is an effective method for diagnosing potential faults in oil-immersed power transformers. Metal oxide semiconductor (MOS) gas sensors exhibit excellent performance. However, high operating temperatures can accelerate device aging, thereby reducing the reliability of online monitoring.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Industrial Engineering, Inha University, Incheon, South Korea.
In the contemporary manufacturing landscape, the advent of artificial intelligence and big data analytics has been a game-changer in enhancing product quality. Despite these advancements, their application in diagnosing failure probability and risk remains underexplored. The current practice of failure risk diagnosis is impeded by the manual intervention of managers, leading to varying evaluations for identical products or similar facilities.
View Article and Find Full Text PDFPLoS One
January 2025
Xi'an Special Equipment Inspection Institute, Xi'an, Shaanxi, China.
A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation accuracy, the GFRFs of an analog circuit are solved directly using time-domain data.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11673, Saudi Arabia.
Industry 4.0 represents the fourth industrial revolution, which is characterized by the incorporation of digital technologies, the Internet of Things (IoT), artificial intelligence, big data, and other advanced technologies into industrial processes. Industrial Machinery Health Management (IMHM) is a crucial element, based on the Industrial Internet of Things (IIoT), which focuses on monitoring the health and condition of industrial machinery.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CARISSMA Institute of Electric, Connected, and Secure Mobility (C-ECOS), Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.
The perception of the vehicle's environment is crucial for automated vehicles. Therefore, environmental sensors' reliability and correct functioning are becoming increasingly important. Current vehicle inspections and self-diagnostics must be adapted to ensure the correct functioning of environmental sensors throughout the vehicle's lifetime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!