Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study develops a vision-based technique for enhancing taillight recognition in autonomous vehicles, aimed at improving real-time decision making by analyzing the driving behaviors of vehicles ahead. The approach utilizes a convolutional 3D neural network (C3D) with feature simplification to classify taillight images into eight distinct states, adapting to various environmental conditions. The problem addressed is the variability in environmental conditions that affect the performance of vision-based systems. Our objective is to improve the accuracy and generalizability of taillight signal recognition under different conditions. The methodology involves using a C3D model to analyze video sequences, capturing both spatial and temporal features. Experimental results demonstrate a significant improvement in the model's accuracy (85.19%) and generalizability, enabling precise interpretation of preceding vehicle maneuvers. The proposed technique effectively enhances autonomous vehicle navigation and safety by ensuring reliable taillight state recognition, with potential for further improvements under nighttime and adverse weather conditions. Additionally, the system reduces latency in signal processing, ensuring faster and more reliable decision making directly on the edge devices installed within the vehicles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359336 | PMC |
http://dx.doi.org/10.3390/s24165162 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!