A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differentially Private Client Selection and Resource Allocation in Federated Learning for Medical Applications Using Graph Neural Networks. | LitMetric

AI Article Synopsis

  • Federated learning (FL) allows decentralized training of machine learning models while preserving patient privacy, making it particularly valuable in healthcare settings.
  • The proposed method, DPS-GAT, combines graph attention networks with differential privacy techniques to efficiently manage client selection and resource allocation, addressing issues like data diversity and limited communication.
  • Experiments show that DPS-GAT outperforms traditional FL methods in model accuracy, privacy, and resource efficiency, indicating its potential for improving patient care through better predictive models and secure data collaboration.

Article Abstract

Federated learning (FL) has emerged as a pivotal paradigm for training machine learning models across decentralized devices while maintaining data privacy. In the healthcare domain, FL enables collaborative training among diverse medical devices and institutions, enhancing model robustness and generalizability without compromising patient privacy. In this paper, we propose DPS-GAT, a novel approach integrating graph attention networks (GATs) with differentially private client selection and resource allocation strategies in FL. Our methodology addresses the challenges of data heterogeneity and limited communication resources inherent in medical applications. By employing graph neural networks (GNNs), we effectively capture the relational structures among clients, optimizing the selection process and ensuring efficient resource distribution. Differential privacy mechanisms are incorporated, to safeguard sensitive information throughout the training process. Our extensive experiments, based on the Regensburg pediatric appendicitis open dataset, demonstrated the superiority of our approach, in terms of model accuracy, privacy preservation, and resource efficiency, compared to traditional FL methods. The ability of DPS-GAT to maintain a high and stable number of client selections across various rounds and differential privacy budgets has significant practical implications, indicating that FL systems can achieve strong privacy guarantees without compromising client engagement and model performance. This balance is essential for real-world applications where both privacy and performance are paramount. This study suggests a promising direction for more secure and efficient FL medical applications, which could improve patient care through enhanced predictive models and collaborative data utilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360477PMC
http://dx.doi.org/10.3390/s24165142DOI Listing

Publication Analysis

Top Keywords

medical applications
12
differentially private
8
private client
8
client selection
8
selection resource
8
resource allocation
8
federated learning
8
graph neural
8
neural networks
8
differential privacy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!