Stress has various impacts on the health of human beings. Recent success in wearable sensor development, combined with advancements in deep learning to automatically detect features from raw data, opens several interesting applications related to detecting emotional states. Being able to accurately detect stress-related emotional arousal in an acute setting can positively impact the imminent health status of humans, i.e., through avoiding dangerous locations in an urban traffic setting. This work proposes an explainable deep learning methodology for the automatic detection of stress in physiological sensor data, recorded through a non-invasive wearable sensor device, the Empatica E4 wristband. We propose a Long-Short Term-Memory (LSTM) network, extended through a Deep Generative Ensemble of conditional GANs (LSTM DGE), to deal with the low data regime of sparsely labeled sensor measurements. As explainability is often a main concern of deep learning models, we leverage Integrated Gradients (IG) to highlight the most essential features used by the model for prediction and to compare the results to state-of-the-art expert-based stress-detection methodologies in terms of precision, recall, and interpretability. The results show that our LSTM DGE outperforms the state-of-the-art algorithm by 3 percentage points in terms of recall, and 7.18 percentage points in terms of precision. More importantly, through the use of Integrated Gradients as a layer of explainability, we show that there is a strong overlap between model-derived stress features for electrodermal activity and existing literature, which current state-of-the-art stress detection systems in medical research and psychology are based on.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359526 | PMC |
http://dx.doi.org/10.3390/s24165085 | DOI Listing |
The increasing prevalence of diabetes mellitus worldwide necessitates that medical undergraduates acquire a deep understanding of the disease to ensure accurate diagnosis and effective management. Traditional teaching methods, while foundational, often lack the interactive elements that enhance student engagement and knowledge retention. This study aimed to evaluate the effectiveness of a novel educational board game, "Diabe-teach," in enhancing knowledge retention among medical students compared with conventional self-study methods.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Computer Science and Engineering, Shri Shankaracharya Institute of Professional Management and Technology, Raipur, (C.G.), India.
This study presents an advanced methodology for 3D heart reconstruction using a combination of deep learning models and computational techniques, addressing critical challenges in cardiac modeling and segmentation. A multi-dataset approach was employed, including data from the UK Biobank, MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, and clinical datasets of congenital heart disease. Preprocessing steps involved segmentation, intensity normalization, and mesh generation, while the reconstruction was performed using a blend of statistical shape modeling (SSM), graph convolutional networks (GCNs), and progressive GANs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
To assess the choroidal vessels in healthy eyes using a novel three-dimensional (3D) deep learning approach. In this cross-sectional retrospective study, swept-source OCT 6 × 6 mm scans on Plex Elite 9000 device were obtained. Automated segmentation of the choroidal layer was achieved using a deep-learning ResUNet model along with a volumetric smoothing approach.
View Article and Find Full Text PDFSci Rep
January 2025
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!