A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Genetic Diversity of the Macrophyte in Backwaters Reflects Differences in the Hydrological Connectivity and Water Flow Rate of Habitats. | LitMetric

Macrophytes often live in fluvial backwaters that have a variety of hydrological connections to a main river. Since the ability of these plants to adapt to changing environments may depend on the genetic diversity of the populations, it is important to know whether it can be influenced by habitat characteristics. We examined the microsatellite polymorphism of the submerged macrophyte from various backwaters and showed that the genetic diversity of this plant clearly reflects habitat hydrological differences. The greatest genetic variability was found in a canal system where constant water flow maintained a direct connection between the habitats and the river. In contrast, an isolated backwater on the protected side of the river had the lowest plant genetic diversity. Oxbows permanently connected to the branch system with static or flowing water, and former river branches temporarily connected to the main bed contained populations with moderately high or low genetic variability. The results demonstrate that habitat fragmentation can be a result not only of the loss of direct water contact, but also of the lack of flowing water. Adverse hydrological changes can reduce the genetic diversity of populations and thus the ability of this macrophyte to adapt to changing environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360828PMC
http://dx.doi.org/10.3390/plants13162220DOI Listing

Publication Analysis

Top Keywords

genetic diversity
20
macrophyte backwaters
8
water flow
8
adapt changing
8
changing environments
8
diversity populations
8
genetic variability
8
flowing water
8
genetic
7
water
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!