Amid the current environmental crisis caused by plastic accumulation, one of the proposed solutions to manage this problem is using biodegradable polymers. However, the impact of adding biodegradable polymers to the well-established circular economy of recyclable polymers, such as HDPE, has not been fully considered. Therefore, there is a need to reconsider the way we consume, dispose of, and manage biodegradable polymers after use. This study evaluates the effect of varying the contents of a biodegradable polymer, taking poly(lactic acid) (PLA) as a model biodegradable polymer, on the thermal and mechanical properties of HDPE. The study highlights the importance of identifying and disposing of biodegradable polymers to avoid mixtures with HDPE, in order not to affect mechanical performance when considering reprocessing and a new life cycle of this conventional polymer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360120 | PMC |
http://dx.doi.org/10.3390/polym16162387 | DOI Listing |
Sci Rep
January 2025
Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, 66075-110, Brazil.
Plastic poses a significant environmental impact due to its chemical resilience, leading to prolonged and degradation times and resulting in widespread adverse effects on global flora and fauna. Cutinases are essential enzymes in the biodegradation process of synthetic polymers like polyethylene terephthalate (PET), which recognized organisms can break down. Here, we used molecular dynamics and binding free energy calculations to explore the interaction of nine synthetic polymers, including PET, with Cutinase from Fusarium oxysporum (FoCut).
View Article and Find Full Text PDFClin Exp Metastasis
January 2025
Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou, 310009, Zhejiang, China.
Background: In recent years, the emphasis has shifted to understanding the role of N1-methyladenosine (m1A) in tumor progression as little is known about its regulatory effect on mRNA and its role in the metastasis of colorectal cancer (CRC).
Methods: We performed methylated RNA immunoprecipitation sequencing of tumor tissues and tumor-adjacent normal tissues from three patients with CRC to determine the m1A profile of mRNA in CRC. The expression of diaphanous-related formin 3 (DIAPH3) and its correlation with clinicopathological characteristics of CRC were evaluated using immunohistochemistry and online datasets.
Sci Rep
January 2025
Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain.
Spinal cord injury (SCI) causes abnormal liver function, the development of metabolic dysfunction-associated steatotic liver disease features and metabolic impairment in patients. Experimental models also demonstrate acute and chronic changes in the liver that may, in turn, affect SCI recovery. These changes have collectively been proposed to contribute to the development of a SCI-induced metabolic dysfunction-associated steatohepatitis (MASH).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico. Electronic address:
Levan, a β(2 → 6) linked D-fructofuranosyl polymer, is gaining significant attention in basic and applied research. It has been demonstrated that most properties are related to levan molecular weight but also its β(2 → 1) branching degree. In this paper the relationship between levan branching degree, particle size, and molecular weight is reviewed, exploring also how these structural parameters influence levan susceptibility to exo- and endolevanase hydrolysis for levans produced by three recombinants bacterial levansucrases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!