This study introduces the synthesis and detailed characterization of a novel thermochromic material capable of reversible alterations in its thermotropic transmittance. Through an emulsion polymerization process, this newly developed material is composed of 75-85% octadecyl acrylate and 0-7% allyl methacrylate, demonstrating a pronounced discoloration effect across a narrow yet critical temperature range of 24.5-39 °C. The synthesized powder underwent a battery of tests, including differential scanning calorimetry and thermogravimetric analysis, as well as scanning electron microscopy. These comprehensive evaluations confirmed the material's exceptional thermal stability, uniform particle size distribution, and strong anchoring properties. Building upon these findings, we advanced the development of thermochromic polyvinyl butyral films and laminated glass products. By utilizing a coextrusion technique, we integrated these films into laminated glass, setting a new benchmark against existing glass technologies. Remarkably, the incorporation of thermochromic PVB films into laminated glass led to a significant reduction in solar irradiance of 20-30%, outperforming traditional double silver low-emissivity glass. This achievement demonstrates the exceptional shading and thermal insulation properties of the material. The research presented herein not only pioneers a valuable methodology for the engineering of smart materials with tunable thermotropic transmittance but also holds the key to unlocking enhanced energy efficiency across a spectrum of applications. The potential impact of this innovation on the realm of sustainable building materials is profound, promising significant strides toward energy conservation and environmental stewardship.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359470PMC
http://dx.doi.org/10.3390/polym16162385DOI Listing

Publication Analysis

Top Keywords

films laminated
12
laminated glass
12
thermotropic transmittance
8
glass
5
development advanced
4
advanced solid-state
4
thermochromic
4
solid-state thermochromic
4
thermochromic materials
4
materials responsive
4

Similar Publications

Synthesis and Characterization of Polyimide with High Blackness and Low Thermal Expansion by Introducing 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole-Based Chromophores.

Polymers (Basel)

November 2024

National and Local Joint Engineering Research Center for Advanced Packaging Materials and Technology, Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China.

The market demand for black polyimide (BPI) has grown hugely in the field of flexible copper-clad laminates (FCCLs) as a replacement for transparent yellow polyimide. The 3,6-bis(thiophen-2-yl)diketopyrrolopyrroles (TDPP) derivative is recognized for its high molar extinction coefficient. In this research, we have synthesized a diamine monomer named 3,6-bis[5-(4-amino-3-fluorophenyl)thiophen-2-yl]-2,5-bis(2-ethylhexyl)pyrrolo[4,3-c]pyrrole-1,4-dione (DPPTENFPDA), featuring a TDPP unit attached by fluorinated benzene rings.

View Article and Find Full Text PDF

High-performance H/CO separation from 4-nm-thick oriented Zn(benzimidazole) films.

Sci Adv

December 2024

Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland.

High-performance membrane-based H/CO separation offers a promising way to reduce the energy costs of precombustion capture. Current membranes, often made from two-dimensional laminates like metal-organic frameworks, have limitations due to complex fabrication methods requiring high temperatures, organic solvents, and long synthesis time. These processes often result in poor H/CO selectivity under pressurized conditions due to defective transport pathways.

View Article and Find Full Text PDF

The aim of this study was to evaluate if high barrier recyclable material polyethylene/ethylene vinyl alcohol (PE/EVOH) can be an alternative non-recyclable polyamides (PA)/PE laminate and also if high barrier is required or recyclable PE material with low barrier properties is good enough to maintain the quality of thermally processed mashed potato and ground carrot. The oxygen transmission rate (OTR) of the PA/PE and PE films decreased after heat treatment, while no change was observed for PE/EVOH films. Food contact did not impact the OTR of PA/PE and PE/EVOH films, while the OTR of PE films decreased.

View Article and Find Full Text PDF

Mechanical Motion and Color Change of Humidity-Responsive Cellulose Nanocrystal Films from Sunflower Pith.

Polymers (Basel)

November 2024

Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.

Nanocellulose has prompted extensive exploration of its applications in advanced functional materials, especially humidity-responsive materials. However, the sunflower pith (SP), a unique agricultural by-product with high cellulose and pectin content, is always ignored and wasted. This work applied sulfuric acid hydrolysis and sonication to sunflower pith to obtain nanocellulose and construct film materials with humidity-responsive properties.

View Article and Find Full Text PDF

Structural, Mechanical, and Optical Properties of Laminate-Type Thin Film SWCNT/SiON Composites.

Nanomaterials (Basel)

November 2024

Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.

The development of new encapsulating coatings for flexible solar cells (SCs) can help address the complex problem of the short lifespan of these devices, as well as optimize the technological process of their production. In this study, new laminate-type protective composite coatings were prepared using a silicon oxynitride thin-film matrix obtained by curing the pre-ceramic polymer perhydropolysilazane (PHPS) through two low-temperature methods: (i) thermal annealing at 180 °C and (ii) exposure to UV radiation at wavelengths of 185 and 254 nm. Single-walled carbon nanotubes (SWCNTs) were used as fillers via dry transfer, facilitating their horizontal orientation within the matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!