Considering the dilemma of obtaining economic and high-performance composites based on non-polar and main-chain-saturated ethylene propylene diene monomer rubber (EPDM), we proposed an effective and universal filler modification and nanocomposite preparation method. Specifically, the montmorillonite (MMT) surface was coated with polydopamine (PDA) to obtain DMMT, which was confirmed by XRD, XPS, FTIR, and TGA. After compounding DMMT gel with the solid EPDM via the gel compounding method, a silane coupling agent, vinyltrimethoxysilane, was introduced to construct covalent interactions between rubber and filler. Compared with the unmodified MMT filler EPDM, the EPDM/DMMT nanocomposite showed much fewer filler aggregates in the matrix. The highest tensile strength of the composites reached 6.5 MPa with 10 phr DMMT, almost 200% higher than that of pure EPDM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360802 | PMC |
http://dx.doi.org/10.3390/polym16162381 | DOI Listing |
Int J Biol Macromol
January 2025
Civil Engineering Department, Düzce University, Duzce, Turkey. Electronic address:
Molecules
November 2024
Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, China.
Integrating rubber with superior low-temperature capabilities, such as ethylene propylene diene monomer (EPDM), is a strategic approach to bolster the low-temperature performance of fluoroelastomer (FKM). However, FKM and EPDM are thermodynamically incompatible. This work synthetized three EPDM-based polar macromolecular compatibilizers, epoxidized EPDM (EPDM-EP), 2,2-trifluoroethylamine-grafted epoxidized EPDM (EPDM-TF), and 2,4-difluorobenzylamine-grafted epoxidized EPDM (EPDM-DF), to enhance the compatibility between FKM and EPDM.
View Article and Find Full Text PDFSci Rep
October 2024
Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia, Egypt.
The positron annihilation lifetime (PAL) spectroscopy characteristics of ethylene-propylene-diene monomer rubber (EPDM) composites reinforced with treated wheat husk fibers (WHFs) were investigated for the first time. PAL spectroscopy is employed to study the free volume of polymers. The use of lignocellulosic materials as reinforcement in polymeric composites has gained attention due to their low cost, availability, and eco-friendliness.
View Article and Find Full Text PDFInt J Exerc Sci
July 2024
School of Engineering and Design, Technical University of Munich, Munich, Bavaria, GERMANY.
Running shoes, and in particular insoles, are the first interface between runners and running surface. Different insole attenuation properties may vary perception of cushioning and, accordingly, the effect on muscle adaptation. The aim of this study is to find the just noticeable difference between four insole materials, and investigate the parameters of in-vitro measurement of impact testing to predict cushioning comfort.
View Article and Find Full Text PDFPolymers (Basel)
August 2024
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.
Considering the dilemma of obtaining economic and high-performance composites based on non-polar and main-chain-saturated ethylene propylene diene monomer rubber (EPDM), we proposed an effective and universal filler modification and nanocomposite preparation method. Specifically, the montmorillonite (MMT) surface was coated with polydopamine (PDA) to obtain DMMT, which was confirmed by XRD, XPS, FTIR, and TGA. After compounding DMMT gel with the solid EPDM via the gel compounding method, a silane coupling agent, vinyltrimethoxysilane, was introduced to construct covalent interactions between rubber and filler.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!