Using a newly developed flow test bench, several charge configurations were analyzed to quantify the influence of the charge configuration in the mold in sheet molding compound (SMC) manufacturing. A test bench was developed to satisfy the industrial needs for the incoming goods inspection as well as the need for the flow characterization of rheological models in the simulation. The test setup has a cylindrical opening for the charge placement, from where the material is pressed into a thin flow channel, forcing the material to reorient. A comparison was performed by juxtaposing the resulting compression pressure recorded during the process. The charge for this test series, placed into the cylindrical opening, has two basal configurations, one consisting of a stack of disks, and the second in a rectangular sheet rolled up into a spiral. Six charge variations were tested in total. The amount of material, the batch, the layering and the production direction of the sheet proved to have a significant influence on the necessary compression pressure. Guidelines about the recommended charge configurations could be derived for optimized production settings, such as a reduction in the compression pressure and modifications to the charge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360508 | PMC |
http://dx.doi.org/10.3390/polym16162351 | DOI Listing |
F1000Res
January 2025
Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Background: Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs.
View Article and Find Full Text PDFJ Orthop
July 2025
Department of Hand Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Aims And Objectives: Dynamic incursion of lumbrical muscle proximal to the distal edge of transverse carpal ligament (TCL) has been long debated for its role in causing median nerve compression in the carpal tunnel. This study aims to evaluate the pattern of lumbrical incursion into the carpal tunnel in various finger positions and determine their extent of presence and relationship with respect to the TCL and to each other in the carpal tunnel.
Materials & Methods: Dissection of 30 fresh frozen cadaveric hands was done to map the lumbrical muscles.
Nat Methods
January 2025
Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
The physical microenvironment plays a crucial role in tumor development, progression, metastasis and treatment. Recently, we proposed four physical hallmarks of cancer, with distinct origins and consequences, to characterize abnormalities in the physical tumor microenvironment: (1) elevated compressive-tensile solid stresses, (2) elevated interstitial fluid pressure and the resulting interstitial fluid flow, (3) altered material properties (for example, increased tissue stiffness) and (4) altered physical micro-architecture. As this emerging field of physical oncology is being advanced by tumor biologists, cell and developmental biologists, engineers, physicists and oncologists, there is a critical need for model systems and measurement tools to mechanistically probe these physical hallmarks.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!