Converting carbon dioxide (CO) into high-value-added chemicals using solar energy is a promising approach to reducing carbon dioxide emissions; however, single photocatalysts suffer from quick the recombination of photogenerated electron-hole pairs and poor photoredox ability. Herein, silver (Ag) nanoparticles featuring with localized surface plasmon resonance (LSPR) are combined with g-CN to form a Schottky junction for photothermal catalytic CO reduction. The Ag/g-CN exhibits higher photocatalytic CO reduction activity under UV-vis light; the CH and CO evolution rates are 10.44 and 88.79 µmol·h·g, respectively. Enhanced photocatalytic CO reduction performances are attributed to efficient hot electron transfer in the Ag/g-CN Schottky junction. LSPR-induced hot electrons from Ag nanoparticles improve the local reaction temperature and promote the separation and transfer of photogenerated electron-hole pairs. The charge carrier transfer route was investigated by in situ irradiated X-ray photoelectron spectroscopy (XPS). The three-dimensional finite-difference time-domain (3D-FDTD) method verified the strong electromagnetic field at the interface between Ag and g-CN. The photothermal catalytic CO reduction pathway of Ag/g-CN was investigated using in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS). This study examines hot electron transfer in the Ag/g-CN Schottky junction and provides a feasible way to design a plasmonic metal/polymer semiconductor Schottky junction for photothermal catalytic CO reduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359675 | PMC |
http://dx.doi.org/10.3390/polym16162317 | DOI Listing |
Nano Lett
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China.
GaO Schottky photodiodes are being actively explored for solar-blind ultraviolet (SBUV) detection, owing to the fast photoresponse and easy fabrication. However, their performance, limited by the Schottky contact, mostly underperforms the expectations. Herein, a Ni/β-GaO vertical Schottky barrier diode (SBD) with an ultrathin anode electrode is demonstrated.
View Article and Find Full Text PDFSci Rep
January 2025
Photonics Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, National Engineering Research Center of Wide Band-Gap Semiconductor, School of Microelectronics, Xidian University, Xi'an 710071, China.
This study systematically investigates the effects of anode metals (Ti/Au and Ni/Au) with different work functions on the electrical and temperature characteristics of β-GaO-based Schottky barrier diodes (SBDs), junction barrier Schottky diodes (JBSDs) and P-N diodes (PNDs), utilizing Silvaco TCAD simulation software, device fabrication and comparative analysis. From the perspective of transport characteristics, it is observed that the SBD exhibits a lower turn-on voltage and a higher current density. Notably, the V of the Ti/Au anode SBD is merely 0.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China.
Bipolar junction transistors (BJTs) are crucial components in high-power electronic applications. However, while two-dimensional (2D) semiconductors with exceptional electrical properties have been extensively studied in field-effect transistors, their application in BJTs has received far less attention. In this study, we demonstrate high-gain MoS BJTs based on metal-semiconductor Schottky contacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!