AI Article Synopsis

  • The challenge of improving tensile strength and elongation in thermoplastic/lignin composites is tackled by creating sodium-alginate-doped lignin nanoparticles (SLNPs) as an eco-friendly filler for poly(butylene adipate-co-terephthalate) (PBAT).* -
  • A small addition (0.5 wt%) of SLNPs to PBAT significantly enhances its yield strength, tensile strength, and elongation at break by approximately 32.4%, 31.8%, and 35.1% respectively, due to SLNP's rigid structure and nanostructural features.* -
  • The resulting PBAT/SLNP composite films show excellent UV resistance and improved moisture barrier properties

Article Abstract

It is a formidable challenge in thermoplastic/lignin composites to simultaneously boost tensile strength and elongation performance due to the rigidity of lignin. To address this issue, sodium-alginate-doped lignin nanoparticles (SLNPs) were prepared by combining solvent exchange and a coprecipitation method and used as an eco-friendly filler for poly(butylene adipate-co-terephthalate) (PBAT). The results indicated that the 1% polyanionic sodium alginate solution contributed to the formation of SLNP in lignin/THF solution. SLNP with a mean hydrodynamic diameter of ~500 nm and a Zeta potential value of -19.2 mV was obtained, indicating more hydrophobic lignin nanoparticles and a smaller number of agglomerates in SLNP suspension. Only 0.5 wt% SLNP addition improved the yield strength, tensile strength, and elongation at break by 32.4%, 31.8%, and 35.1% of the PBAT/SLNP composite films, respectively. The reinforcing effect resulted from the rigid aromatic structure of SLNP, whereas the enhanced elongation was attributed to the nanostructural feature of SLNP, which may promote boundary cracking. Additionally, the PBAT/SLNP composite films displayed excellent ultraviolet (UV) resistance with a UV shielding percentage near 100% for UVB and more than 75% for UVA, respectively. The addition of SLNP hindered water vapor, enhancing the moisture barrier properties. Overall, this study provides an effective strategy to eliminate the decrement in elongation performance for PBAT/lignin composites and suggest they are good candidates to be extensively utilized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359584PMC
http://dx.doi.org/10.3390/polym16162312DOI Listing

Publication Analysis

Top Keywords

lignin nanoparticles
12
composite films
12
tensile strength
12
strength elongation
12
elongation performance
12
sodium-alginate-doped lignin
8
pbat/slnp composite
8
slnp
7
elongation
5
nanoparticles pbat
4

Similar Publications

Fabrication of lignin nanoparticles with adjustable size, antioxidant, antibacterial, and hydrophobic properties by a two-step fractionation.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China. Electronic address:

Article Synopsis
  • Lignin nanoparticles (LNPs) are being recognized for their eco-friendly properties and potential in sustainable materials.
  • A new two-step fractionation technique has created four lignin fractions (F1, F2, F3, and F4) with optimal characteristics for LNPs production, achieving a high recovery rate of 88.7% from alkali lignin.
  • The study highlights how the size and structural properties of LNPs can be controlled for better antibacterial and antioxidant performance, particularly favoring a higher syringyl/guaiacyl ratio for smaller nanoparticles.
View Article and Find Full Text PDF

Study on Highly Sensitive Capacitive Pressure Sensor Based on Silk Fibroin-Lignin Nanoparticles Hydrogel.

Biomacromolecules

January 2025

Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.

Silk fibroin (SF) hydrogel has been proven to have excellent applications in the field of pressure sensors, but its sensing performance still needs improvement. A flexible hydrogel prepared from natural macromolecular materials was developed, and lignin nanoparticles (LNPs) were introduced during the preparation of the SF hydrogel. When LNPs account for 3% of SF, the sensing unit of the SF-LNPs hydrogel exhibits high stress sensitivity (1.

View Article and Find Full Text PDF

Nano structural regulation of lignin and evaluation of its ultraviolet light absorption properties through quantum chemistry calculations.

Int J Biol Macromol

January 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.

Lignin, a biomass-derived material containing chromophores, possesses the potential to serve as a versatile organic ultraviolet (UV) light screening agent. By employing quantum chemical computation techniques, an amphoteric deep eutectic solvent (DES) based on sulfamic acid was purposefully designed and engineered to create a solvent system tailored for the nanoparticle formation and functionalization of lignin. As confirmed by experimental evidence, the size of the modified lignin nanoparticles (LNPs) varies from 168.

View Article and Find Full Text PDF

Plant Cell Wall-Like Soft Materials: Micro- and Nanoengineering, Properties, and Applications.

Nanomicro Lett

January 2025

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Plant cell wall (CW)-like soft materials, referred to as artificial CWs, are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition, structure, and mechanics of plant CWs. CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure-property relationships of native plant CWs or to fabricate functional materials. Here, research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including cellulose, pectin, and hemicellulose, as well as organic polymers like lignin.

View Article and Find Full Text PDF

Lignin, the most abundant natural aromatic polymer, holds considerable promise for applications in various industries. The primary obstacle to the valorization of lignin into useful materials is its low molecular weight and diminished chemical reactivity, attributable to its intricate structure. This study aimed to treat lignocellulosic biomass using a switchable solvent (DBU-HexOH/HO) derived from the non-nucleophilic superbase 1,8-diazabicyclo [5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!