Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Tissue engineering represents a promising field in regenerative medicine, with bioresorbable polymers such as polycaprolactone (PCL) playing a crucial role as scaffolds. These scaffolds support the growth and repair of tissues by mimicking the extracellular matrix.
Objective: This study aimed to assess the in vivo performance of three-dimensional PCL scaffolds by evaluating their effects on bone repair in rat calvaria and the tissue reaction in subcutaneous implant sites, as well as their impact on major organs such as the kidneys, lungs, and liver.
Methods: Three-dimensional scaffolds made of PCL were implanted in the subcutaneous tissue of rats' backs and calvaria. Histological analyses were conducted to observe the bone repair process in calvaria and the tissue response in subcutaneous implant sites. Additionally, the kidneys, lungs, and livers of the animals were examined for any adverse tissue alterations.
Results: The histological analysis of the bone repair in calvaria revealed newly formed bone growing towards the center of the defects. In subcutaneous tissues, a thin fibrous capsule with collagenous fibers enveloping the implant was observed in all animals, indicating a positive tissue response. Importantly, no harmful alterations or signs of inflammation, hyperplasia, metaplasia, dysplasia, or hemorrhage were detected in the kidneys, lungs, and liver.
Conclusions: The findings demonstrate that PCL scaffolds produced through additive manufacturing are biocompatible, non-cytotoxic, and bioresorbable, promoting osteoconduction without adverse effects on major organs. Hence, PCL is confirmed as a suitable biomaterial for further studies in tissue engineering and regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359069 | PMC |
http://dx.doi.org/10.3390/polym16162271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!