A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Buffer Capacity of Polyelectrolyte Microcapsules Depends on the Type of Template. | LitMetric

One of the key physicochemical parameters of polyelectrolyte microcapsules (PMCs) is their buffer capacity (BC). The BC of the microcapsules allows for an assessment of the change in protonation state across the entire polyelectrolyte system, which directly impacts the buffer barrier of PMCs, as well as the stability and physical properties of their shell. However, the buffer capacity of PMCs and their behavior under changes in ionic strength and temperature can differ depending on the type of core used to form the microcapsules. As part of this study, we revealed the buffer capacity (BC) of polyelectrolyte microcapsules formed on polystyrene cores (PMC) and studied the influence of ionic strength and environmental temperature on the BC of these capsules. We found that the buffer capacity of PMC differs from the BC of water at a pH above 8; the addition of sodium chloride leads to an increase in buffer capacity in alkaline conditions, and conversely, thermal treatment leads to its decrease at a pH of 9. The results obtained are different from the BC of polyelectrolyte microcapsules formed on CaCO cores, which suggests a difference in the physicochemical properties of these types of capsules. The buffer capacity of polyelectrolyte microcapsules depends on the type of template used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359720PMC
http://dx.doi.org/10.3390/polym16162261DOI Listing

Publication Analysis

Top Keywords

buffer capacity
28
polyelectrolyte microcapsules
20
capacity polyelectrolyte
12
buffer
8
microcapsules depends
8
depends type
8
type template
8
ionic strength
8
microcapsules formed
8
capsules buffer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!