AI Article Synopsis

Article Abstract

In this study, the structural attributes of nanoparticles obtained by a renewable and non-immunogenic "inulinated" analog of the "pegylated" PLA (PEG-PLA) were examined, together with the potential of these novel nanocarriers in delivering poorly water-soluble drugs. Characterization of INU-PLA assemblies, encompassing critical aggregation concentration (CAC), NMR, DLS, LDE, and SEM analyses, was conducted to elucidate the core/shell architecture of the carriers and in vitro cyto- and hemo-compatibility were assayed. The entrapment and in vitro delivery of sorafenib tosylate () were also studied. INU-PLA copolymers exhibit distinctive features: (1) Crew-cut aggregates are formed with coronas of 2-4 nm; (2) a threshold surface density of 1 INU/nm triggers a configuration change; (3) INU surface density influences PLA core dynamics, with hydrophilic segment stretching affecting PLA distribution towards the interface. INU-PLA demonstrated an outstanding loading of and excellent biological profile, with effective internalization and delivery to HepG2 cells, yielding a comparable IC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359108PMC
http://dx.doi.org/10.3390/pharmaceutics16080971DOI Listing

Publication Analysis

Top Keywords

surface density
8
inulin amphiphilic
4
amphiphilic copolymer-based
4
copolymer-based drug
4
drug delivery
4
delivery unraveling
4
unraveling structural
4
structural features
4
features graft
4
graft constructs
4

Similar Publications

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.

View Article and Find Full Text PDF

Revealing the Surface Reconstruction on the High OER Catalytic Activity of Ni3S2.

ChemSusChem

January 2025

Sun Yat-Sen University, School of Materials Science and Engineering, No. 135, Xingang Xi Road, China, 510006, Guangzhou, CHINA.

Sluggish oxygen evolution reaction (OER) is a crucial part of water splitting and solar fuel generation, which limits their utilization. Ni3S2 is a promising OER catalyst, in which surface reconstruction is an important step to improve performance. In this study, DFT calculations were employed to investigate the effect of surface reconstruction on (001), (110), and (101) surfaces of Ni3S2 in alkaline OER.

View Article and Find Full Text PDF

Electrochemically grown copper nanoclusters (CuNCs: < 3 nm) from single-atom catalysts have recently attracted intensive attention as electrocatalysts for CO2 and CO reduction reaction (CO2RR/CORR) because they exhibit distinct product selectivity compared with conventional Cu nanoparticles (typically larger than 10 nm). Herein, we conducted a detailed investigation into the size dependence of CuNCs on selectivity for multicarbon (C2+) production in CORR. These nanoclusters were electrochemically grown from single Cu atoms dispersed on covalent triazine frameworks (Cu-CTFs).

View Article and Find Full Text PDF

Selective Interface Engineering with Large π-Conjugated Molecules Enables Durable Zn Anodes.

Angew Chem Int Ed Engl

January 2025

USTC: University of Science and Technology of China, School of Chemistry and Materials Science, No.96, JinZhai Road, Baohe District, 230026, Hefei, CHINA.

Undesirable dendrite growth and side reactions at the electrical double layer (EDL) of Zn/electrolyte interface are critical challenges limiting the performance of aqueous zinc ion batteries. Through density functional theory calculations, we demonstrate that grafting large π-conjugated molecules (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!