AI Article Synopsis

  • 10-hydroxy-2-decenoic acid (10-HDA) is a bioactive fatty acid from royal jelly that has shown potential antitumor effects against various cancer cell lines, including lymphoma cells (SU-DHL-2) in this study.* -
  • The study found that 10-HDA significantly reduced the survival of SU-DHL-2 cells in a dose-dependent manner, identifying an IC value of 496.8 μg/mL, while having higher IC values for normal liver and fibroblast cells.* -
  • Proteomics analysis showed significant changes in protein expression related to the complement and coagulation pathways, highlighting potential therapeutic mechanisms for 10-HDA in treating lymphoma, although more research on

Article Abstract

10-hydroxy-2-decenoic acid (10-HDA), which is a unique bioactive fatty acid of royal jelly synthesized by nurse bees for larvae and adult queen bees, is recognized for its dual utility in medicinal and nutritional applications. Previous research has indicated that 10-HDA exerts antitumor effects on numerous tumor cell lines, including colon cancer cells, A549 human lung cancer cells, and human hepatoma cells. The present study extends this inquiry to lymphoma, specifically evaluating the impact of 10-HDA on the SU-DHL-2 cell line. Our findings revealed dose-dependent suppression of SU-DHL-2 cell survival, with an IC of 496.8 μg/mL at a density of 3 × 10 cells/well after 24 h. For normal liver LO2 cells and human fibroblasts (HSFs), the IC values were approximately 1000 μg/mL and over 1000 μg/mL, respectively. The results of label-free proteomics revealed 147 upregulated and 347 downregulated differentially expressed proteins that were significantly enriched in the complement and coagulation cascades pathway (adjusted -value = 0.012), including the differentially expressed proteins prothrombin, plasminogen, plasminogen, carboxypeptidase B2, fibrinogen beta chain, fibrinogen gamma chain, and coagulation factor V. The top three hub proteins, ribosomal protein L5, tumor protein p53, and ribosomal protein L24, were identified via protein-protein interaction (PPI) analysis. This result showed that the complement and coagulation cascade pathways might play a key role in the antitumor process of 10-HDA, suggesting a potential therapeutic avenue for lymphoma treatment. However, the specificity of the effect of 10-HDA on SU-DHL-2 cells warrants further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357620PMC
http://dx.doi.org/10.3390/ph17081088DOI Listing

Publication Analysis

Top Keywords

10-hda su-dhl-2
12
antitumor effects
8
su-dhl-2 cells
8
cancer cells
8
cells human
8
su-dhl-2 cell
8
1000 μg/ml
8
differentially expressed
8
expressed proteins
8
complement coagulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!