The damage caused by oxidative and glycative stress to cells accumulates on a daily basis and accelerates aging. Glutathione (GSH), a major antioxidant molecule in living organisms, plays a crucial role in detoxifying the stress-causing substances inherent in cells, such as HO and methylglyoxal (MG), an important intermediate of advanced glycation end-products (AGEs). In this study, we focused on the enhanced antioxidant capacity of the selenium analog of GSH, i.e., selenoglutathione (GSeH), compared to GSH, and examined its effects on the detoxification of stress-causing substances and improvement in cell viability. In cell-free systems, GSeH (1 mM) generated in situ from GSeSeG in the presence of NADPH and glutathione reductase (GR) rapidly reduced more than 80% of 0.1 mM HO, indicating the significant glutathione peroxidase (GPx)-like antioxidant activity of GSeSeG. Similarly, around 50% of 0.5 mM MG was degraded by 0.5 mM GSeH within 30 min through a non-enzymatic mechanism. It was also found that GSeSeG (0.05-0.5 mM) showed glutathione -transferase (GST)-like activity against 1-chloro-2,4-dinitrobenzene (CDNB), a model substance of oxidative stress-causing toxic materials in cells. Meanwhile, HeLa cells that had been pre-treated with GSeSeG exhibited increased viability against 1.2 mM HO (at [GSeSeG] = 0.5-50 μM) and 4 mM MG (at [GSeSeG] = 3 μM), and the latter effect was maintained for two days. Thus, GSeSeG is a potential antioxidant and antiglycative stress agent for cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359168PMC
http://dx.doi.org/10.3390/ph17081049DOI Listing

Publication Analysis

Top Keywords

antiglycative stress
8
stress-causing substances
8
cells
5
gseseg
5
antioxidative antiglycative
4
stress activities
4
activities selenoglutathione
4
selenoglutathione diselenide
4
diselenide damage
4
damage caused
4

Similar Publications

Glycation of proteins has been linked to several cardiovascular diseases, including atherosclerosis and diabetes mellitus. Various natural compounds have been explored for their anti-glycating ability. Aloin is the major anthraquinone glycoside, acquired from the Aloe species.

View Article and Find Full Text PDF
Article Synopsis
  • Controlled glycation of proteins can lead to harmful compounds called AGEs, especially when blood glucose levels are high, prompting research into natural protective agents like ginger extract.
  • In experiments, human serum albumin (HSA) was treated with glucose alone or with ginger extract, revealing ginger's ability to inhibit glycation and reduce harmful modifications to the protein over ten weeks.
  • The study concluded that ginger extract has antioxidant properties and can prevent the biochemical and structural changes associated with glycation in HSA, suggesting its potential use in managing health issues related to diabetes and other diseases.
View Article and Find Full Text PDF
Article Synopsis
  • * This study tested three copper and iron complexes combined with the ligand BMPA for their ability to protect yeast cells from G-iS caused by methylglyoxal (MG).
  • * The complexes enhanced yeast tolerance by reducing oxidation and lipid peroxidation, increasing antioxidant enzyme activity, and were particularly effective against MG-induced stress, suggesting potential for future therapeutic use.
View Article and Find Full Text PDF

Olive leaves have been a therapeutic herbal agent for diseases for centuries. Olive leaves contain many health-beneficial nutrients and bioactive components. There is much evidence for the positive effects of the phenolic compounds they contain on health.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) with multiple structures are formed at the sites where carbonyl groups of reducing sugars bind to free amino groups of proteins through the Maillard reaction. In recent years, it has been highlighted that the accumulation of AGEs, which are generated when carbonyl compounds produced in the process of sugar metabolism react with proteins, is involved in various diseases. Creatine is a biocomponent that is homeostatically present throughout the body and is known to react nonenzymatically with α-dicarbonyl compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!