Parallel artificial membrane permeability analysis (PAMPA) is used to determine the permeability of compounds through concentrated negatively charged phospholipid bilayer barriers. We employed MacroFlux (a scaled-up version of PAMPA) to test the permeation rate of terazosin hydrochloride (TH) tablets and predict in vivo bioequivalence. The dissolution profiles and permeability of one reference formulation, and seven generic TH tablets, were compared. The dissolution profiles of these generic tablets were equivalent to that of the reference drug in four different media. However, the flux and the total permeated amount of some generic TH tablets were below the lower limit of the confidence interval of the original acceptance range in MacroFlux, which implied risk in the bioequivalence test in vivo. We further evaluated potential factors responsible for this discrepancy by µFlux, including active pharmaceutical ingredient (API) permeability and excipient prescriptions. The analysis showed that different properties of API were a main factor leading to biological inequivalence in the MacroFlux assay, while excipient prescriptions did not have an impact on bioequivalence risk. These data indicated that the flux assay may be a helpful as an auxiliary method for predicting bioequivalence of generic drugs and analyze the factors responsible for bioequivalence risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357005PMC
http://dx.doi.org/10.3390/ph17081024DOI Listing

Publication Analysis

Top Keywords

generic tablets
12
terazosin hydrochloride
8
hydrochloride tablets
8
parallel artificial
8
artificial membrane
8
membrane permeability
8
permeability analysis
8
dissolution profiles
8
factors responsible
8
excipient prescriptions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!