A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Green Routes: Exploring Protein-Based Virus-like Nanoparticle Transport and Immune Activation in for Biotechnological Applications. | LitMetric

Viral, bacterial, fungal, and nematode infections cause significant agricultural losses, with limited treatment options, necessitating novel approaches to enhance plant defense systems and protection against pathogens. Virus-like nanoparticles (VLPs), extensively used in animal and human therapies (e.g., vaccines and immune enhancers), hold potential for novel agricultural solutions and advancing plant nanotechnology. This study employed various methodologies, including VLP production, confocal microscopy, and real-time qPCR. Our findings demonstrated the presence of 30 nm Qβ-VLPs, fluorescently labeled, within the intercellular space of leaves one hour post-infiltration. Furthermore, infiltration with Qβ-VLPs led to an upregulation of key defense genes (NbPR1a, NbPR5, NbNPR, NbERF1, NbMYC2, and NbLRR2) in treated plants. Using RT-qPCR, a significant increase in the relative expression levels of defense genes was observed, with sustained high levels of NbERF1 and NbLRR2 even after 24 h. These findings suggest that Qβ-VLPs effectively upregulate genes crucial for pathogen defense in , initiating PAMP-triggered immunity and launching signaling cascades that enhance defense mechanisms. This innovative application of VLPs to activate plant defense programs advances plant nanobiotechnology, offering new agricultural solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358932PMC
http://dx.doi.org/10.3390/vaccines12080831DOI Listing

Publication Analysis

Top Keywords

plant defense
8
agricultural solutions
8
defense genes
8
defense
6
green routes
4
routes exploring
4
exploring protein-based
4
protein-based virus-like
4
virus-like nanoparticle
4
nanoparticle transport
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!