The purpose of this study was to develop a formulation for a recombinant prefusion spike protein vaccine against SARS-CoV-2. It was found that the spike protein was susceptible to aggregation due to mechanical stress. Therefore, formulation studies were initiated focused on screening pharmaceutical excipients capable of preventing this. The screening of a panel of potential stabilizing conditions found that Tween 20 could inhibit mechanically induced aggregation. A concentration-dependent study indicated that a higher concentration of Tween 20 (0.2% /) was required to prevent conformational changes in the trimer. The conformational changes induced by mechanical stress were characterized by size exclusion chromatography (SEC) and hydrogen-deuterium exchange mass spectrometry (HDX-MS), indicating the formation of an extended trimeric conformation that was also unable to bind to antibodies directed to the S2 domain. Long-term stability modeling, using advanced kinetic analysis, indicated that the formulation containing 0.2% (/) Tween 20 at a neutral pH was predicted to be stable for at least two years at 2 °C to 8 °C. Additional stabilizer screening conducted by thermal shift assay indicated that sucrose and glycerol were able to significantly increase the spike protein melting temperature (Tm) and improve the overall thermostability of the spike protein in a short-term stability study. Thus, while 0.2% (/) Tween 20 was sufficient to prevent aggregation and to maintain spike protein stability under refrigeration, the addition of sucrose further improved vaccine thermostability. Altogether, our study provides a systematic approach to the formulation of protein-based COVID-19 vaccine and highlights the impact of mechanical stress on the conformation of the spike protein and the significance of surfactants and stabilizers in maintaining the structural and functional integrity of the spike protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360652 | PMC |
http://dx.doi.org/10.3390/vaccines12080830 | DOI Listing |
Nat Commun
December 2024
Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
The immune escape capacities of XBB variants necessitate the authorization of vaccines with these antigens. In this study, we produce three recombinant trimeric proteins from the RBD sequences of Delta, BA.5, and XBB.
View Article and Find Full Text PDFNat Commun
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.
Highly mutable pathogens generate viral diversity that impacts virulence, transmissibility, treatment, and thwarts acquired immunity. We previously described C19-SPAR-Seq, a high-throughput, next-generation sequencing platform to detect SARS-CoV-2 that we here deployed to systematically profile variant dynamics of SARS-CoV-2 for over 3 years in a large, North American urban environment (Toronto, Canada). Sequencing of the ACE2 receptor binding motif and polybasic furin cleavage site of the Spike gene in over 70,000 patients revealed that population sweeps of canonical variants of concern (VOCs) occurred in repeating wavelets.
View Article and Find Full Text PDFNat Commun
December 2024
Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA.
Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages.
View Article and Find Full Text PDFIntroduction: Dozens of vaccines have been approved or authorized internationally in response to the ongoing SARS-CoV-2 pandemic, covering a range of modalities and routes of delivery. For example, mucosal delivery of vaccines via the intranasal (i.n.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!