Plant-based protein supplements are increasingly popular, yet their efficacy in enhancing athletic performance compared to animal protein, insect protein, or other protein types remains under investigation. This study aimed to assess the effectiveness of plant-based protein on athletic abilities such as muscle strength, endurance performance, and muscle protein synthesis (MPS) rate and compare it to no- or low-protein ingestion and non-plant protein sources. Randomized controlled trials (RCTs) evaluating the beneficial and harmful effects of plant-based protein ingestion on athletic ability in healthy individuals were considered. A systematic search of six databases yielded 2152 studies, which were screened using the Covidence systematic review tool. Thirty-one studies were included for meta-analysis after independent selection, data extraction, and risk of bias assessment by two reviewers. The meta-analysis employed a Bayesian approach using the Markov chain Monte Carlo (MCMC) method through a random-effects model. The results demonstrated that plant-based protein supplements provided greater benefits for athletic performance in healthy individuals compared to the no- or low-protein ingestion group [μ(SMD): 0.281, 95% CI: 0.159 to 0.412; heterogeneity τ: 0.18, 95% CI: 0.017 to 0.362]. However, when compared to other types of protein, plant-based protein ingestion was less effective in enhancing athletic ability [μ(SMD): -0.119, 95% CI: -0.209 to -0.028; heterogeneity τ: 0.076, 95% CI: 0.003 to 0.192]. A subgroup analysis indicated significant improvements in muscle strength and endurance performance in both young and older individuals consuming plant-based protein compared to those with no- or low-protein ingestion. Nonetheless, other protein types showed greater benefits in muscle strength compared to plant-based protein [μ(SMD): -0.133, 95% CI: -0.235 to -0.034; heterogeneity τ: 0.086, 95% CI: 0.004 to 0.214]. In conclusion, while plant-based protein ingestion demonstrates superior efficacy compared to low- or no-protein ingestion, it is not as effective as other protein types such as whey, beef, or milk protein in enhancing athletic performance in healthy individuals. Registration: Registered at the International Prospective Register of Systematic Reviews (PROSPERO) (identification code CRD42024555804).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357476PMC
http://dx.doi.org/10.3390/nu16162748DOI Listing

Publication Analysis

Top Keywords

plant-based protein
36
protein
17
protein ingestion
16
athletic ability
12
enhancing athletic
12
athletic performance
12
protein types
12
muscle strength
12
no- low-protein
12
low-protein ingestion
12

Similar Publications

Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).

View Article and Find Full Text PDF

Risk ranking of mycotoxins in plant-based meat and dairy alternatives under protein transition scenarios.

Food Res Int

January 2025

Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.

While reducing the consumption of animal-source foods is recommended for planetary and human health, potential emerging food safety risks associated with the transition to dietary patterns featuring plant-based meat (PBMA) and dairy alternatives (PBDA) remain unexplored. We assessed the exposure to mycotoxins and ranked the associated health risks related to the consumption of PBMA and PBDA. We simulated diets by replacing animal-source proteins with their plant-based alternatives.

View Article and Find Full Text PDF

Label-free quantitative proteomics of commercial rice beverages reveals the presence of high amounts of exogenous amylases.

Food Res Int

January 2025

Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129 Padova, Italy. Electronic address:

Rice milk is known for its wide range of beneficial effects on human health. Despite an increasing inclination towards rice drinks consumption, not much is known regarding the protein composition of commercial rice beverages. Hence, using a label-free quantitative proteomics approach we analyzed 9 different commercially available rice drinks and identified 259 rice proteins and 4 exogenous microbial α-amylases.

View Article and Find Full Text PDF

Impact of cold plasma-assisted Non-thermal deamidation and glycosylation on the construction of sugar derivative-zein conjugates for enhancing pickering foam stability: Technical principles and molecular interactions.

Food Res Int

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:

There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).

View Article and Find Full Text PDF

The rare zoonotic Borna disease virus (BDV) causes fatal neurological disease in various animals, with a high mortality rate exceeding 90% in central Europe. However, unlike most viruses, it establishes persistent infections within the host cell nucleus, hindering treatment. As successful BDV treatments remain elusive, the researchers turned to a computational approach, utilizing molecular docking, ADME/T, post-docking MMGBSA, MD simulation, DCCM, and PCA to identify promising phytochemical drug candidates targeting the BDV Nucleoprotein (PDB ID: 1N93).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!